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Modelling Autocatalytic Reactions

Consider a chemical species A dissolved in some solvent in a one-dimensional
vessel, say from x = 0 to x = 1. Let u(z,t) be the concentration of A. It’s
reasonable to assume that A diffuses with some diffusivity x. If the amount
of A were conserved we would have u; — Ku,, = 0. If the chemical A can’t
leave the vessel at the endpoints then we’d also have u,(0,t) = u,(1,t) = 0.

But suppose that A IS being created in the vessel, say from other chem-
ical species. Let’s suppose also that the rate at which A is created (on a
per time per length basis) depends ONLY on the current concentration of A
itself and not explicitly any other factors. In this case rate of production of
A is given by some function F'(u). Such reactions are called autocatalytic, if
the presence of the chemical A stimulates the production of more of A.

Exercises

1. Write out the PDE (involving F') satisfied by u(z,t) for such an auto-
catalytic reaction.

2. What should we choose for F'? That depends on the specifics of the
reaction, but here’s a start: We should require F' to satisfy F'(0) = 0
(no A present, none produced). Also, suppose that A can only be
produced up to some maximum concentration, say m, after which the
production rate falls to zero (and maybe then goes negative).

Find a simple function F'(u) (defined for u > 0) that satisfies these
criteria. Hint: an autocatalytic reactant is like a reproducing animal.

Chemical and Biological Waves

Equations of the form u; — ku,, = F(u) don’t typically have closed form
solutions, so we have to resort to numerics. However, there is an important
class of solutions to these type of problems that have physical significance.



They are the so-called travelling wave solutions, and they model the propaga-
tion of chemical reaction “waves”, in the context of autocatalytic reactions, or
“Infestation waves” if the DE models the propagation of some (pest) species.
Such DE’s also come up in genetics to model the spread of genes throughout
a population.

We're going to consider the equation u; — u,, = F'(u) on the entire real
line —0o < z < oo, and we'll look at the specific case F(u) = u(l — u).
Note also I set the diffusivity equal to one. A travelling wave solution to
Ut — Uz = u(1 — u) means a solution of the form

u(a,t) = ol — ct) (1)

for some constant ¢, the wave speed. This looks just like a solution to the
advection equation, which is quite different from diffusion. We’ll look for right
moving waves, so ¢ > 0 (left moving is the same idea). We will require also
that ¢ remain bounded. If we plug u(z,t) = ¢(x —ct) into wy — Uz, = u(l—u)
we find that ¢ must satisfy an ODE

—c¢'(s) = ¢"(s) = (1 = ¢(s))g(s) (2)

(where s = x — c¢t). We need to find a solution to this ODE which remains
bounded for —oo < s < 0.

Let x; = ¢ and o = ¢'. Then equation (2) is equivalent to the nonlinear
ODE system

Ty o= 1 (3)

vy = —(1—x1)x) — cxo. (4)

Time to recall some DE 2! You can sketch a phase portrait for this system.
First, the fixed points are the point (0,0) and (1,0) in the z;z5 plane. The

eigenvalues for the linearized system at (0,0) are 1(—c £ v/c? —4). Now if

¢? < 4 these are complex with negative real part, so (0, 0) is a stable spiral. If
¢ > 4 then (0, 0) is still stable, (a stable node). The eigenvalues for the fixed
point at (1,0) are 3(—c £ v/¢> +4). One cigenvalue is always positive, the
other negative, so (1,0) is ALWAYS a saddle point. A typical phase portrait

for ¢ > 2 looks like



We need to pick out a solution (z1(s),z2(s)), that remains bounded for all
s. If you look at the phase portrait, you’ll see there’s only one candidate
(which I sketched), namely the solution that approaches (1,0) as s — —o0
and (0,0) as s — oo. Now if 0 < ¢ < 2 this solution will spiral around (0, 0),
but if ¢ > 2 the solution will “dive” straight in. There a slight problem with
taking ¢ < 2—see the exercise below.

The solution ¢(s) satisfies lims_,_o, #(s) = 1 and lims_ ¢(s) = 0. Note
also that ¢’ = x5 limits to zero in both directions. The function

u(z,t) = ¢(x — ct)

is a travelling wave solution to u; — u,, = u(1—u). Most amazingly, note we
can construct travelling wave solutions with ANY wave speed ¢ > 2. Here’s
a picture of ¢(s) for ¢ = 3.
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As it turns out, these travelling wave solutions are stable, in the sense
that if you start the PDE with initial data close enough to such a travelling
wave, it will approach the travelling wave solution.

Exercises:

1. If we take 0 < ¢ < 2 the solutions to equations (3) will spiral around
the origin. In the context in which u represents a population density
or chemical density, what’s wrong with this?

2. Show that this analysis holds true for any reaction-diffusion equation
up — Uy = F(u) as long as F' has the properties F'(0) = 0, F(m) = 0,
F(u) > 0 for 0 < u <m, and F(u) <0 for either u < 0 or u > m.



