More On Conservation of Stuff
Kurt Bryan

Introduction

Yesterday we arrived at the relation
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for stuff flowing through a conduit. The function p(x,t) is the density of
the stuff at the point x at time ¢ and ¢(z,t) is the rate that stuff flows past
the point x at time ¢t. The above equation was a direct consequence of the
assumption that the total amount of stuff is conserved; none is created or
destroyed. This equation is extremely general and applies to many physical
situations, from cars on a road to electrons in a wire. It’s called the continuity
equation.

Our ultimate goal is to solve for either p or ¢ and thus say something
about what’s going on physically. The problem is that we have only one
equation and two unknowns, p and q. We need a second equation relating
the two functions, a so-called constitutive relation between p and ¢. This
equation can’t be pulled out of thin air, though. We need to use specific
information about the phenomena we’re trying to model. This is where cars
and electrons part company. We’ll now examine several different situations,
arriving at different models for each.

Advection

Let’s begin with the simplest situation. The function p(z,t) represents
the concentration of pollutants in a river; p has units of kilograms of pollutant
per meter of river length. The width of the river is assumed to be negligible
in comparison to its length. In fact, suppose the river is infinitely long, so
—o0 < x < 00. The pollutants are carried downstream by the river and don’t
tend to spread out (“diffuse”) on their own. Let’s suppose that the speed of
the river water is constant and equal to ¢ meters per second.

With this information we can find a relation between p and ¢. Imagine a
line L drawn straight across the river. From time ¢ to time ¢ + dt a certain
amount of water flows past L. Now since we’re thinking of the river as being
of uniform cross-section, we can specify this amount of water as a “length”



(whose product with the river’s cross sectional area would give the volume
that flowed past). The amount of water flowing past in time dt is in fact cdt
meters, and so the amount of pollutant contained in this water is cp(z, t) dt kg
(if dt is small, so p will be roughly constant). Since the amount of pollutant
flowing past L from ¢ to ¢t + dt is cp(z, t) dt, the rate at which pollutant flows
past L is the amount over dt, i.e., that rate is c¢p(z,t). But this rate is also
by definition ¢(z,t). So the relation between p and ¢ is
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Exercise
e Check that equation (2) balances with respect to dimension!

Combining equation (2) with the continuity equation (1) leads to
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the so-called advection or one-way wave equation. It is a partial differential
equation that the function p(x,t) must satisfy, given the physics of the situ-
ation. The constant c is the wave speed.

0, (3)

Thinking Problems

e Pretend the river is infinitely long, flows from left to right at speed c,
and that at time ¢ = 0 the concentration of pollutants p(z,0) looks like

Figure 1
for z in [—3,3]. Assume that the pollutants have zero concentration
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outside the picture. What would the pollutant concentration look like
at a later time? If it helps, take specific values for ¢ and ¢, say ¢ = 2
meters per second and t = 3.

e Suppose that the initial pollution concentration at time ¢ = 0 pictured
above is described by some function f(x), that is, p(x,0) = f(x). What
is a formula (in terms of f) for p(x,t) at any later time?

The solution above is called a travelling wave. It’s simply some initial
“shape” function propagated downstream at speed c. Notice that the solu-
tion p(z,t) is constant for any fixed value of x — ct. That is, p(z,t) has a
constant value on lines of the form x — ¢t = b, where b is any constant. These
lines are called the characteristics of the differential equation. A picture of
the solution over time and characteristics are given below.

Figure 2

Problems



e If the solution u(z,t) to 4% + 9% = 0 looks like Figure 1 above at time
t = 0, estimate

1. u(3,3)

2. u(4,1)

3. u(3/2,1).

More on Characteristics
There’s another way to see that solutions to equation (3) must be constant

on characteristics x — ¢t = b, without actually solving the DE. Consider a
solution p(z,t) on such a characteristic, so x = b+ ct. Now
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where I've used the chain rule and the fact that % = —c%. Since £ (p(b+

ct,t)) = 0 we conclude that p(b + ct,t) doesn’t depend on ¢, and hence can-
not vary along the characteristic (because as t varies, (b+ ct,t) indexes every
point on the characteristic).

In Summary

In summary, to solve the DE %—l—c% = 0for —oo <z < oo and ¢t > 0 with
p(x,0) = f(x), do the following: Pick some point (zo,tp) at which you’d like
to compute p. The point (g, o) lies on some characteristic = — ¢t = b, where
clearly b = xy — ctg, so the characteristic is just x — ¢t = x¢ — cty. Follow the
characteristic back to the initial condition at ¢ = 0, so x = x¢y — cty. Since
the solution is constant on the characteristics, p(xg,to) = p(zo — cto,0) =

f(l'o — Cto).



