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Fourier Cosine Series

Any reasonable function f (t) on 0 ≤ t ≤ π can be approximated
with a Fourier cosine series

f (t) ≈ a0

+ a1 cos(t)

+ a2 cos(2t)

+ · · ·
+ aN cos(Nt)

if we pick the ak correctly (and take N large enough).
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A Function to Approximate

f (t)
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f (t) ≈ 4.70
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Cosine Series Example

f (t) ≈ 4.70 + 19.1 cos(t) + 19.0 cos(2t)
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The Cosine Series

f (t) ≈ 5.97 + 19.1 cos(t) + 19.0 cos(2t)− 5.88 cos(3t)

Kurt Bryan Wavelets



Outline
Quick Review: Fourier Series

Haar Functions
More General Wavelets

The Cosine Series
Fourier Shortcomings

The Cosine Series

f (t) ≈ 5.97+19.1 cos(t)+19.0 cos(2t)−5.88 cos(3t)−9.92 cos(4t)
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The Cosine Series

+ · · ·+ 12.4 cos(5t) + 2.97 cos(6t)
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The Cosine Series

+ · · · − 1.70 cos(7t)− 0.53 cos(8t)
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The Cosine Coefficients

Any “nice” function f (t) defined on [0, π] can be approximated

f (t) ≈ a0
2

+ a1 cos(t) + a2 cos(2t) + · · ·+ aN cos(Nt)

where

ak =
2

π

∫ π

0
f (t) cos(kt) dt

The more terms you take, the better it gets.
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General Theory

Suppose φ0(t), φ1(t), φ2(t), . . . are a family of functions on
interval [a, b] such that any reasonable f (t) can be written

f (t) = c0φ0(t) + c1φ1(t) + c2φ2(t) + · · ·

Suppose also that the family is orthogonal, i.e., the inner product

(φj , φk) :=

∫ b

a
φj(t)φk(t) dt

is zero when j 6= k . Then
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General Theory

To find the coefficients ck , start with

f = c0φ0 + c1φ1 + c2φ2 + · · ·

Take the inner product of each side with φk :

(f , φk) = c0(φ0, φk) + c1(φ1, φk) + c2(φ2, φk) + · · ·

All the inner products on the right are zero except for ck(φk , φk)
which leads to (f , φk) = ck(φk , φk), so

ck = (f , φk)/(φk , φk).
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Graphical Fourier Analysis

Audio signal and Fourier cosine coefficient magnitudes:
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Fourier Shortcomings

Here’s a plot of the Fourier cosine coefficients for some signal:
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Fourier Shortcomings

Which signal was it?
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Fourier Shortcomings

The problem: a short stretch of signal at frequency “k”
ANYWHERE in the signal excites the corresponding Fourier
frequency.
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Fourier Shortcomings

The basis function overlaps the short signal, no matter where the
signal is supported.

The integral

∫ 1

0
f (t) cos(2π(20)t) dt doesn’t much depend on the

location of f .
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Fourier Shortcomings

What we’d really like is to replace “globally supported” cosines
with something that has small support (but still encodes frequency
information):
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Haar Scaling Function

The Haar scaling function φ0(t) (on [0, 1]) looks like
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Level 0 Approximation

A typical function f (t) can be approximated as

f (t) ≈ c0φ0(t)

with

c0 =
(f , φ0)

(φ0, φ0)
=

∫ 1

0
f (t) dt.

That is, c0 is just the average value of f .
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Level 0 Approximation

The result:
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Mother Haar Wavelet

The mother Haar wavelet is the function ψ0(t)

Note (φ0, ψ0) = 0.
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Level 1 Approximation

We can approximate f (t) = c0φ0(t) + d0ψ0(t) with c0 as before
and

d0 =
(f , ψ0)

(ψ0, ψ0)
=

∫ 1

0
f (t)ψ0(t) dt

=

∫ 1/2

0
f (t) dt −

∫ 1

1/2
f (t) dt
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Level 1 Approximation

The result:
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Level 2 Approximation

To improve the approximation we toss in functions

ψ1,0(t) := ψ(2t) and ψ1,1(t) := ψ(2t − 1)

Both are orthogonal to each other and φ0, ψ0.
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Level 2 Approximation

The approximation f ≈ c0φ0 + d0ψ0 + d1,0ψ1,0 + d1,1ψ1,1 looks like
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Level 3 Approximation

To improve the approximation further we toss in 4 new functions

ψ2,0(t) := ψ(4t), ψ2,1(t) := ψ(4t − 1),

ψ2,2(t) := ψ(4t − 2), ψ2,3(t) := ψ(4t − 3)

All are orthogonal to each other and the previous functions.
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Level 3 Approximation

The approximation to f now looks like
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Level 5 Approximation

If we toss if everything up to ψ4,15 it looks like
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Haar Summary

We have

The Haar scaling function φ0 (constant)

The “mother Haar wavelet” ψ0

The family of wavelets ψk,n(t) = ψ(2kt − n), translates and
dilations of the mother Haar wavelet.

The entire family is orthogonal and can be used to approximate
any continuous function to arbitrary accuracy.
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Haar Summary

We have

The Haar scaling function φ0 (constant)

The “mother Haar wavelet” ψ0

The family of wavelets ψk,n(t) = ψ(2kt − n), translates and
dilations of the mother Haar wavelet.
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A Variation

Note: we could forget the wavelets and use just scalings/translates
of the scaling function φ0 to build f :

Kurt Bryan Wavelets



Outline
Quick Review: Fourier Series

Haar Functions
More General Wavelets

The Scaling Function
The Mother Haar Wavelet
The Wavelet Family

A Variation

If we want to boost resolution to the next level, throw out the 1/4
wide basis functions, use 1/8 wide functions.
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Why the Wavelets?

With scaling function at level 2 we use

{φ(4t), φ(4t − 1), φ(4t − 2), φ(4t − 3)}.

To go to level 3 we toss all these out and use

{φ(8t), φ(8t − 1), . . . , φ(8t − 7)}.

With wavelets, level 2 to level 3 lets us reuse previous basis
functions

{φ0, ψ0, ψ1,0, ψ1,1}︸ ︷︷ ︸
level 2

∪{ψ2,0, ψ2,1, ψ2,2, ψ2,3}︸ ︷︷ ︸
add for level 3
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Generalizing

Can this be generalized? Specifically, are there other scaling
functions φ(t) and wavelets ψ(t) so that

The set φ(t), ψ(t), and the wavelets ψk,n are orthogonal,

Linear combinations can approximate any function to any
desired accuracy,

The functions have local support,

The function are “easy” to compute?
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More General Wavelets

Forget the wavelets for a minute. The essential ingredient in the
Haar scheme is the scaling function. Note

φ0(t) = c0φ0(2t) + c1φ0(2t − 1)

with c0 = c1 = 1:

Kurt Bryan Wavelets



Outline
Quick Review: Fourier Series

Haar Functions
More General Wavelets

The Dilation Equation
The Wavelets

More General Wavelets

To generalize, seek a scaling function φ(t) with the property that
φ(t) can itself be built from a linear combination of half-width
translated versions of itself (the “dilation equation”):

φ(t) =
M∑

m=0

cmφ(2t −m)

for some coefficients c0, . . . , cm.

What should we use for the cm? And if we know those, how would
we find φ?
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More General Wavelets

To generalize, seek a scaling function φ(t) with the property that
φ(t) can itself be built from a linear combination of half-width
translated versions of itself (the “dilation equation”):

φ(t) =
M∑

m=0

cmφ(2t −m)

for some coefficients c0, . . . , cm.

What should we use for the cm? And if we know those, how would
we find φ?
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Finding φ

Pretend we know some suitable choices for the cm. We can try
fixed point iteration to compute φ:

1 Make an initial guess φ(t) = φ0(t).

2 Iterate

φk+1(t) =
M∑

m=0

cmφk(2t −m)

3 Repeat to convergence.
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Convergence

Under certain conditions on the cm (algebraic, messy)

The iteration converges to a function φ(t).

The function φ satisfies the dilation equation, and

The set {φ(2Nt − n); 0 ≤ n ≤ 2N − 1} can be used to
approximate functions to arbitrary accuracy by taking N large.

Kurt Bryan Wavelets



Outline
Quick Review: Fourier Series

Haar Functions
More General Wavelets

The Dilation Equation
The Wavelets

Convergence

Under certain conditions on the cm (algebraic, messy)

The iteration converges to a function φ(t).

The function φ satisfies the dilation equation, and

The set {φ(2Nt − n); 0 ≤ n ≤ 2N − 1} can be used to
approximate functions to arbitrary accuracy by taking N large.

Kurt Bryan Wavelets



Outline
Quick Review: Fourier Series

Haar Functions
More General Wavelets

The Dilation Equation
The Wavelets

Convergence

Under certain conditions on the cm (algebraic, messy)

The iteration converges to a function φ(t).

The function φ satisfies the dilation equation, and

The set {φ(2Nt − n); 0 ≤ n ≤ 2N − 1} can be used to
approximate functions to arbitrary accuracy by taking N large.

Kurt Bryan Wavelets



Outline
Quick Review: Fourier Series

Haar Functions
More General Wavelets

The Dilation Equation
The Wavelets

Example

Take c0 = (1 +
√

3)/4
√

2, c1 = (3 +
√

3)/4
√

2, c2 =
(3−

√
3)/4
√

2, c3 = (1−
√

3)/4
√

2. Start with φ0(t) = 1 on [0, 3]:
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Example

First iteration: φ1(t) =
∑3

m=0 cmφ0(2t −m)
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Example

Second iteration: φ2(t) =
∑3

m=0 cmφ1(2t −m)
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Example

Third iteration: φ3(t) =
∑3

m=0 cmφ2(2t −m)
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Example

Fourth iteration: φ4(t) =
∑3

m=0 cmφ3(2t −m)
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Example

Fifth iteration: φ5(t) =
∑3

m=0 cmφ4(2t −m)
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Example

The Daubechies D4 scaling function
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Computing the Wavelet

If we find a scaling function that satisfies the dilation equation

φ(t) =
M∑

m=0

cmφ(2t −m)

then the mother wavelet ψ can be computed from

ψ(t) =
M∑

m=0

(−1)mcM−mφ(2t −m)
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Example

The Daubechies D4 mother wavelet
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The D4 Wavelet Family

The D4 scaling function φ(t), the mother wavelet ψ(t), and the
translates/scalings

ψk,n(t) = ψ(2kt − n)

with 0 ≤ n ≤ 2k − 1 form an orthogonal basis for the space of
(square-integrable) functions on [0, 3].
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Example

A function on [0, 3].
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Example

Approximation from just scaling function φ(t):
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Example

Approximation from φ and mother wavelet ψ.
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Example

Approximation from φ, ψ, ψ1,0, . . . , ψ3,7.
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Example

Approximation from φ, ψ, ψ1,0, . . . , ψ5,31.

Kurt Bryan Wavelets



Outline
Quick Review: Fourier Series

Haar Functions
More General Wavelets

The Dilation Equation
The Wavelets

Example

Approximation from φ, ψ, ψ1,0, . . . , ψ7,127.
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Compression Example: D4 Wavelets

Compute “all” coefficients cj ,k = (f , ψj ,k) keep only 100 largest,
reconstruct:
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Compression Example: Cosine Basis

Compute “all” coefficients ck = (f , cos(kπt/3) keep only 100
largest, reconstruct:
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Other Wavelet Families

There are MANY of other types of wavelets that have been
constructed. The D8 scaling function and wavelet:
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Image Compression Example, LeGall 5/3 Wavelets

An image (left) and wavelet compressed version (right, 75 percent
compression).
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Image Compression Example, LeGall 5/3 Wavelets

Wavelet compressed images at 94 percent (left) and 98.6 percent
(right)
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Conclusion

Wavelets have found many uses in mathematics and engineering:

The JPEG 2000 compression standard is based on wavelets
(the LeGall 5/3 and Daubechies 9/7 wavelets).

The FBI compresses fingerprint records using a wavelet-based
algorithm.

Wavelets are used in signal processing/analysis (to localize
frequency analysis).

Wavelets are even useful in “pure” mathematics, as a tool in
functional analysis.
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