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First CT Scanners

First practical scanners built in the late 1960’s.
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First CT Scanners

Images took hours to process/render, and were crude:
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Modern CT Scanners

Modern scanners are fast and high-resolution:
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The Mathematics

The mathematics underlying the model for a CT scanner is much
older.

Based on the Radon (and Fourier) transforms, dating back
the early 20th century (and farther).

Most of it is easy enough to do in a Calc 2 class!
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Mathematical Model

We fire x-rays through a body at many angles and offsets, measure
beam attenuation (output/input intensity):

Kurt Bryan Inverse Problems 4: The Mathematics of CT Scanners



History and Background
Mathematical Model

Inverting the Radon Transform

Attenuation of x-rays
Geometry
The Radon Transform and Sinogram

Attenuation of x-rays

Suppose L(s), a ≤ s ≤ b parameterizes a line with respect to
arc length.

Let I (s) be the intensity of the x-ray along L, with I (a) = Ia
(known input intensity).

We suppose the x-ray beam is attenuated according to

I ′(s) = −λ(L(s))I (s)

as it passes through the body. The function λ is called the
attenuation coefficient. We want to find λ.
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Attenuation of x-rays

I ′(s) = −λ(L(s))I (s) with I (a) = Ia known.

We measure the output I (b).
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Solving the Attenuation DE

The DE I ′(s) = −λ(L(s))I (s) with I (a) = Ia is easy to solve via
separation of variables. We find

I (s) = Ia exp

(
−
∫ s

a
λ(L(t)) dt

)
.

If we know (measure) I (b) then we can compute∫ b

a
λ(L(t)) dt = − ln(I (b)/I (a)).

We can find the integral on the left, for any line through the body.
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Attenuation Example

Some line integrals:
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Geometry and Notation

Suppose L(s) = p + sn⊥, where

n =< cos(θ), sin(θ) > dictates line normal vector, θ ∈ [0, π).

p = rn, r ∈ (−1, 1) is “offset” from the origin.

Note −
√

1− r 2 < s <
√

1− r 2.
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The Radon Transform

In summary, by firing x-rays through the body, we can compute the
integral

d(r , θ) =

∫ √1−r2

−
√

1−r2

λ(L(s)) ds

for 0 ≤ θ < π,−1 < r < 1.

The quantity d(r , θ) is called the “Radon Transform” of λ.

Is this enough to determine λ? How?
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The Sinogram

CT target and its sinogram:
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Intuition

Observation: Every x-ray through a high attenuation region will
yield a large line integral.
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Intuition Quantified

For any fixed point (x0, y0) in the body, the line L(s) with normal
at angle θ is given non-parametrically by

x cos(θ) + y sin(θ) = r

with r = x0 cos(θ) + y0 sin(θ):
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Intuition Quantified

Each point on the curve r = x0 cos(θ) + y0 sin(θ) in the sinogram
corresponds to a line through (x0, y0) in the target.
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Intuition Quantified

The average value of the Radon transform d(θ, r) over all lines
through (x0, y0) is then

λ̃(x0, y0) =

∫ π

0
d(θ, x0 cos(θ) + y0 sin(θ)) dθ.

This is called the backprojection of d(θ, r).

Maybe λ̃ will look like λ.
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Unfiltered Backprojection is Blurry

Straight backprojection (“unfiltered” backprojection) gives
slightly blurry reconstructions.

Unfiltered backprojection is only an approximate inverse for
the Radon transform.

There’s another step needed to compute the true inverse (and
get sharper images).
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Filtered Backprojection

If d(θ, r) is the “raw” sinogram, first construct d̃(θ, r) by
expanding into a Fourier series1 with respect to r :

d(θ, r) =
∞∑

k=−∞
cke iπkr with ck =

∫ 1

−1
d(θ, r)e−iπkr dr ,

then

set

d̃(θ, r)
∞∑

k=−∞
|k |cke iπkr .

In signal processing terms, we apply a high-pass “ramp” filter to d ,
in the r variable. Finally, backproject.

1in the continuous case, a Fourier integral transform
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The Radial Case

Suppose λ depends only distance from the origin, so
λ = λ(

√
x2 + y 2):
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The Radial Case

In this case it’s easy to see that the Radon transform depends only
on r , not θ. For a line at distance r from the origin

d(r) =

∫ √1−r2

−
√

1−r2

λ(
√

r 2 + s2) ds = 2

∫ √1−r2

0
λ(
√

r 2 + s2) ds.
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The Radial Case

In summary, if we are given the function d(r) for 0 ≤ r ≤ 1

d(r) = 2

∫ √1−r2

0
λ(
√

r 2 + s2) ds

can we find the function λ?

With a couple change of variables, this integral equation can be
massaged into a “well-known” integral equation.
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The Radial Case

Start with

d(r) = 2

∫ √1−r2

0
λ(
√

r 2 + s2) ds.

Make u-substitution u =
√

r 2 + s2, (so s =
√

u2 − r 2, and
ds = u du/

√
u2 − r 2), obtain

d(r) = 2

∫ 1

r

uλ(u)√
u2 − r 2

du.
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The Radial Case

Rewrite as

d(r) = 2

∫ 1

r

uλ(u)√
u2 − r 2

du

= 2

∫ 1

r

uλ(u)√
(1− r 2)− (1− u2)

du.

Define z = 1− r 2 (so r =
√

1− z), substitute t = 1− u2 (so
u =
√

1− t, du = − 1
2
√

1−t dt) to find

d(
√

1− z) =

∫ z

0

λ(
√

1− t)√
z − t

dt.
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The Radial Case

In

d(
√

1− z) =

∫ z

0

λ(
√

1− t)√
z − t

dt

define g(z) = d(
√

1− z) and φ(t) = λ(
√

1− t). We obtain∫ z

0

φ(t)√
z − t

dt = g(z)

known as Abel’s equation. It has a closed-form solution!
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The Radial Case Solution

The solution to ∫ z

0

φ(t)√
z − t

dt = g(z)

is

φ(t) =
1

π

d

dt

(∫ t

0

g(w) dw√
t − w

)
.

(Recall g(w) = d(
√

1− w)). We solve for φ(t) and recover
λ(r) = φ(1− r 2).
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Radial Example

Suppose d(r) =
√

1−r2

3 (14 + 4r 2). Then

g(z) = d(
√

1− z) =

√
z

3
(18− 4z)

and

φ(t) =
1

π

d

dt

(∫ t

0

g(w) dw√
t − w

)
= 3− t.

Finally
λ(r) = φ(1− r 2) = 2 + r 2.
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Notes URL

www.rose-hulman.edu/˜bryan/invprobs.html
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