Inverse Problems 4: The Mathematics of CT Scanners

Kurt Bryan

April 28, 2011
(1) History and Background
(2) Mathematical Model

- Attenuation of x-rays
- Geometry
- The Radon Transform and Sinogram
(3) Inverting the Radon Transform
- Unfiltered Backprojection
- Filtered Backprojection
- An Easy Special Case

First CT Scanners

First practical scanners built in the late 1960's.

First CT Scanners

Images took hours to process/render, and were crude:

Modern CT Scanners

Modern scanners are fast and high-resolution:

The Mathematics

The mathematics underlying the model for a CT scanner is much older.

- Based on the Radon (and Fourier) transforms, dating back the early 20th century (and farther).

The Mathematics

The mathematics underlying the model for a CT scanner is much older.

- Based on the Radon (and Fourier) transforms, dating back the early 20th century (and farther).
- Most of it is easy enough to do in a Calc 2 class!

Mathematical Model

We fire x-rays through a body at many angles and offsets, measure beam attenuation (output/input intensity):

Attenuation of x-rays

- Suppose $\mathbf{L}(s), a \leq s \leq b$ parameterizes a line with respect to arc length.

Attenuation of x-rays

- Suppose $\mathbf{L}(s), a \leq s \leq b$ parameterizes a line with respect to arc length.
- Let $I(s)$ be the intensity of the x-ray along \mathbf{L}, with $I(a)=I_{a}$ (known input intensity).

Attenuation of x-rays

- Suppose $\mathbf{L}(s), a \leq s \leq b$ parameterizes a line with respect to arc length.
- Let $I(s)$ be the intensity of the x-ray along \mathbf{L}, with $I(a)=I_{a}$ (known input intensity).
- We suppose the x-ray beam is attenuated according to

$$
I^{\prime}(s)=-\lambda(\mathrm{L}(s)) I(s)
$$

as it passes through the body. The function λ is called the attenuation coefficient. We want to find λ.

Attenuation of x-rays

$I^{\prime}(s)=-\lambda(\mathbf{L}(s)) I(s)$ with $I(a)=I_{a}$ known.

We measure the output $I(b)$.

Solving the Attenuation DE

The DE $I^{\prime}(s)=-\lambda(\mathbf{L}(s)) I(s)$ with $I(a)=I_{a}$ is easy to solve via separation of variables. We find

$$
I(s)=I_{a} \exp \left(-\int_{a}^{s} \lambda(\mathbf{L}(t)) d t\right) .
$$

Solving the Attenuation DE

The DE $I^{\prime}(s)=-\lambda(\mathbf{L}(s)) I(s)$ with $I(a)=I_{a}$ is easy to solve via separation of variables. We find

$$
I(s)=I_{a} \exp \left(-\int_{a}^{s} \lambda(\mathbf{L}(t)) d t\right) .
$$

If we know (measure) $I(b)$ then we can compute

$$
\int_{a}^{b} \lambda(\mathbf{L}(t)) d t=-\ln (I(b) / I(a))
$$

We can find the integral on the left, for any line through the body.

Attenuation Example

Some line integrals:

Geometry and Notation

Suppose $\mathbf{L}(s)=\mathbf{p}+s \mathbf{n}^{\perp}$, where

- $\mathbf{n}=<\cos (\theta), \sin (\theta)>$ dictates line normal vector, $\theta \in[0, \pi)$.
- $\mathbf{p}=r \mathbf{n}, r \in(-1,1)$ is "offset" from the origin.

Note $-\sqrt{1-r^{2}}<s<\sqrt{1-r^{2}}$.

The Radon Transform

In summary, by firing x-rays through the body, we can compute the integral

$$
d(r, \theta)=\int_{-\sqrt{1-r^{2}}}^{\sqrt{1-r^{2}}} \lambda(\mathbf{L}(s)) d s
$$

for $0 \leq \theta<\pi,-1<r<1$.
The quantity $d(r, \theta)$ is called the "Radon Transform" of λ.

The Radon Transform

In summary, by firing x-rays through the body, we can compute the integral

$$
d(r, \theta)=\int_{-\sqrt{1-r^{2}}}^{\sqrt{1-r^{2}}} \lambda(\mathbf{L}(s)) d s
$$

for $0 \leq \theta<\pi,-1<r<1$.

The quantity $d(r, \theta)$ is called the "Radon Transform" of λ.

Is this enough to determine λ ? How?

The Sinogram

CT target and its sinogram:

The Sinogram

CT target and its sinogram:

The Sinogram

CT target and its sinogram:

Intuition

Observation: Every x-ray through a high attenuation region will yield a large line integral.

Intuition Quantified

For any fixed point $\left(x_{0}, y_{0}\right)$ in the body, the line $\mathbf{L}(s)$ with normal at angle θ is given non-parametrically by

$$
x \cos (\theta)+y \sin (\theta)=r
$$

with $r=x_{0} \cos (\theta)+y_{0} \sin (\theta)$:

Intuition Quantified

Each point on the curve $r=x_{0} \cos (\theta)+y_{0} \sin (\theta)$ in the sinogram corresponds to a line through (x_{0}, y_{0}) in the target.

Intuition Quantified

The average value of the Radon transform $d(\theta, r)$ over all lines through $\left(x_{0}, y_{0}\right)$ is then

$$
\tilde{\lambda}\left(x_{0}, y_{0}\right)=\int_{0}^{\pi} d\left(\theta, x_{0} \cos (\theta)+y_{0} \sin (\theta)\right) d \theta
$$

This is called the backprojection of $d(\theta, r)$.

Intuition Quantified

The average value of the Radon transform $d(\theta, r)$ over all lines through $\left(x_{0}, y_{0}\right)$ is then

$$
\tilde{\lambda}\left(x_{0}, y_{0}\right)=\int_{0}^{\pi} d\left(\theta, x_{0} \cos (\theta)+y_{0} \sin (\theta)\right) d \theta
$$

This is called the backprojection of $d(\theta, r)$.
Maybe $\tilde{\lambda}$ will look like λ.

History and Background

Unfiltered Backprojection
Filtered Backprojection
An Easy Special Case

Unfiltered Backprojection Example 1

History and Background
Mathematical Model
Inverting the Radon Transform

Unfiltered Backprojection
Filtered Backprojection
An Easy Special Case

Unfiltered Backprojection Example 2

Unfiltered Backprojection Example 3

Unfiltered Backprojection is Blurry

- Straight backprojection ("unfiltered" backprojection) gives slightly blurry reconstructions.

Unfiltered Backprojection is Blurry

- Straight backprojection ("unfiltered" backprojection) gives slightly blurry reconstructions.
- Unfiltered backprojection is only an approximate inverse for the Radon transform.

Unfiltered Backprojection is Blurry

- Straight backprojection ("unfiltered" backprojection) gives slightly blurry reconstructions.
- Unfiltered backprojection is only an approximate inverse for the Radon transform.
- There's another step needed to compute the true inverse (and get sharper images).

Filtered Backprojection

If $d(\theta, r)$ is the "raw" sinogram, first construct $\tilde{d}(\theta, r)$ by expanding into a Fourier series ${ }^{1}$ with respect to r :

$$
d(\theta, r)=\sum_{k=-\infty}^{\infty} c_{k} e^{i \pi k r} \text { with } c_{k}=\int_{-1}^{1} d(\theta, r) e^{-i \pi k r} d r
$$

then
${ }^{1}$ in the continuous case, a Fourier integral transform

Filtered Backprojection

If $d(\theta, r)$ is the "raw" sinogram, first construct $\tilde{d}(\theta, r)$ by expanding into a Fourier series ${ }^{1}$ with respect to r :

$$
d(\theta, r)=\sum_{k=-\infty}^{\infty} c_{k} e^{i \pi k r} \text { with } c_{k}=\int_{-1}^{1} d(\theta, r) e^{-i \pi k r} d r
$$

then set

$$
\tilde{d}(\theta, r) \sum_{k=-\infty}^{\infty}|k| c_{k} e^{i \pi k r}
$$

In signal processing terms, we apply a high-pass "ramp" filter to d, in the r variable. Finally, backproject.
${ }^{1}$ in the continuous case, a Fourier integral transform

History and Background
Mathematical Model Inverting the Radon Transform

Unfiltered Backprojection

Filtered Backprojection Example 1

History and Background
Mathematical Model Inverting the Radon Transform

Unfiltered Backprojection

Filtered Backprojection Example 2

History and Background
Mathematical Model Inverting the Radon Transform

Unfiltered Backprojection

Filtered Backprojection Example 3

The Radial Case

Suppose λ depends only distance from the origin, so $\lambda=\lambda\left(\sqrt{x^{2}+y^{2}}\right):$

The Radial Case

In this case it's easy to see that the Radon transform depends only on r, not θ. For a line at distance r from the origin

$$
d(r)=\int_{-\sqrt{1-r^{2}}}^{\sqrt{1-r^{2}}} \lambda\left(\sqrt{r^{2}+s^{2}}\right) d s=2 \int_{0}^{\sqrt{1-r^{2}}} \lambda\left(\sqrt{r^{2}+s^{2}}\right) d s
$$

The Radial Case

In summary, if we are given the function $d(r)$ for $0 \leq r \leq 1$

$$
d(r)=2 \int_{0}^{\sqrt{1-r^{2}}} \lambda\left(\sqrt{r^{2}+s^{2}}\right) d s
$$

can we find the function λ ?

The Radial Case

In summary, if we are given the function $d(r)$ for $0 \leq r \leq 1$

$$
d(r)=2 \int_{0}^{\sqrt{1-r^{2}}} \lambda\left(\sqrt{r^{2}+s^{2}}\right) d s
$$

can we find the function λ ?

With a couple change of variables, this integral equation can be massaged into a "well-known" integral equation.

Unfiltered Backprojection

The Radial Case

Start with

$$
d(r)=2 \int_{0}^{\sqrt{1-r^{2}}} \lambda\left(\sqrt{r^{2}+s^{2}}\right) d s
$$

The Radial Case

Start with

$$
d(r)=2 \int_{0}^{\sqrt{1-r^{2}}} \lambda\left(\sqrt{r^{2}+s^{2}}\right) d s
$$

Make u-substitution $u=\sqrt{r^{2}+s^{2}}$, (so $s=\sqrt{u^{2}-r^{2}}$, and $\left.d s=u d u / \sqrt{u^{2}-r^{2}}\right)$, obtain

$$
d(r)=2 \int_{r}^{1} \frac{u \lambda(u)}{\sqrt{u^{2}-r^{2}}} d u
$$

The Radial Case

Rewrite as

$$
\begin{aligned}
d(r) & =2 \int_{r}^{1} \frac{u \lambda(u)}{\sqrt{u^{2}-r^{2}}} d u \\
& =2 \int_{r}^{1} \frac{u \lambda(u)}{\sqrt{\left(1-r^{2}\right)-\left(1-u^{2}\right)}} d u .
\end{aligned}
$$

The Radial Case

Rewrite as

$$
\begin{aligned}
d(r) & =2 \int_{r}^{1} \frac{u \lambda(u)}{\sqrt{u^{2}-r^{2}}} d u \\
& =2 \int_{r}^{1} \frac{u \lambda(u)}{\sqrt{\left(1-r^{2}\right)-\left(1-u^{2}\right)}} d u .
\end{aligned}
$$

Define $z=1-r^{2}$ (so $r=\sqrt{1-z}$), substitute $t=1-u^{2}$ (so $\left.u=\sqrt{1-t}, d u=-\frac{1}{2 \sqrt{1-t}} d t\right)$ to find

$$
d(\sqrt{1-z})=\int_{0}^{z} \frac{\lambda(\sqrt{1-t})}{\sqrt{z-t}} d t
$$

The Radial Case

In

$$
d(\sqrt{1-z})=\int_{0}^{z} \frac{\lambda(\sqrt{1-t})}{\sqrt{z-t}} d t
$$

define $g(z)=d(\sqrt{1-z})$ and $\phi(t)=\lambda(\sqrt{1-t})$. We obtain

$$
\int_{0}^{z} \frac{\phi(t)}{\sqrt{z-t}} d t=g(z)
$$

known as Abel's equation. It has a closed-form solution!

The Radial Case Solution

The solution to

$$
\int_{0}^{z} \frac{\phi(t)}{\sqrt{z-t}} d t=g(z)
$$

is

$$
\phi(t)=\frac{1}{\pi} \frac{d}{d t}\left(\int_{0}^{t} \frac{g(w) d w}{\sqrt{t-w}}\right) .
$$

(Recall $g(w)=d(\sqrt{1-w})$). We solve for $\phi(t)$ and recover $\lambda(r)=\phi\left(1-r^{2}\right)$.

Radial Example

Suppose $d(r)=\frac{\sqrt{1-r^{2}}}{3}\left(14+4 r^{2}\right)$. Then

$$
g(z)=d(\sqrt{1-z})=\frac{\sqrt{z}}{3}(18-4 z)
$$

and

$$
\phi(t)=\frac{1}{\pi} \frac{d}{d t}\left(\int_{0}^{t} \frac{g(w) d w}{\sqrt{t-w}}\right)=3-t
$$

Finally

$$
\lambda(r)=\phi\left(1-r^{2}\right)=2+r^{2}
$$

Notes URL

www.rose-hulman.edu/~bryan/invprobs.html

