Inverse Problems 3: Why Differentiation is Harder than Integration

Kurt Bryan

April 26, 2011
(1) Computing Derivatives

- The Interest Rate Problem
- Discrete Data
- Failure
(2) Why Derivatives Are Hard (And What To Do About It)
- Optimization Approach
- Tikhonov Regularization
(3) The Gravity Problem

A More Interesting Problem

Put P_{0} dollars at time $t=0$ into a 401 K with instantaneous return rate $r(t)$.

A More Interesting Problem

Put P_{0} dollars at time $t=0$ into a 401 K with instantaneous return rate $r(t)$.

Forward Problem: Compute $P(t)$ from P_{0} and $r(t)$. This means solving the DE

$$
P^{\prime}(t)=r(t) P(t)
$$

A More Interesting Problem

Put P_{0} dollars at time $t=0$ into a 401 K with instantaneous return rate $r(t)$.

Forward Problem: Compute $P(t)$ from P_{0} and $r(t)$. This means solving the DE

$$
P^{\prime}(t)=r(t) P(t)
$$

The solution is

$$
P(t)=P_{0} \exp \left(\int_{0}^{t} r(s) d s\right) .
$$

A More Interesting Problem

Inverse Problem: Estimate $r(t)$ from $P(t)$. This means finding $r(t)$ from the DE

$$
P^{\prime}(t)=r(t) P(t)
$$

A More Interesting Problem

Inverse Problem: Estimate $r(t)$ from $P(t)$. This means finding $r(t)$ from the DE

$$
P^{\prime}(t)=r(t) P(t)
$$

The solution is just

$$
r(t)=P^{\prime}(t) / P(t)
$$

But it's not as simple as it looks...

Estimating the Interest Rate

Suppose we know $P(t)$ at times $t_{k}=k \Delta t, k=0,1,2, \ldots$, rounded to the nearest penny of course. We can estimate

$$
P^{\prime}\left(t_{k}\right) \approx \frac{P\left(t_{k+1}\right)-P\left(t_{k-1}\right)}{2 \Delta t}
$$

Estimating the Interest Rate

Suppose we know $P(t)$ at times $t_{k}=k \Delta t, k=0,1,2, \ldots$, rounded to the nearest penny of course. We can estimate

$$
P^{\prime}\left(t_{k}\right) \approx \frac{P\left(t_{k+1}\right)-P\left(t_{k-1}\right)}{2 \Delta t}
$$

From $r(t)=P^{\prime}(t) / P(t)$ we get

$$
r\left(t_{k}\right) \approx \frac{P\left(t_{k+1}\right)-P\left(t_{k-1}\right)}{2 \Delta t P\left(t_{k}\right)}
$$

Example

Suppose $r(t)=0.04(3-2 \cos (2 t)+t / 3)$ on $0 \leq t \leq 5$, with $P(0)=100$. If we use $r\left(t_{k}\right) \approx \frac{P\left(t_{k+1}\right)-P\left(t_{k-1}\right)}{2 \Delta t P\left(t_{k}\right)}$ with $\Delta t=0.5$ the result is

True and Estimated Interest Rates

Example

With $\Delta t=0.05$ the result is better:

True and Estimated Interest Rates

Example

But with $\Delta t=0.005$ we get

True and Estimated Interest Rates

Example

And $\Delta t=0.0005$ yields

True and Estimated Interest Rates

What's Wrong?

We don't really know $P\left(t_{k}\right)$, but $P\left(t_{k}\right)$ rounded to the nearest cent, i.e., we know

$$
\tilde{P}\left(t_{k}\right)=P\left(t_{k}\right)+\epsilon_{k}
$$

where $\left|\epsilon_{k}\right| \leq 0.005$ dollars.

What's Wrong?

We don't really know $P\left(t_{k}\right)$, but $P\left(t_{k}\right)$ rounded to the nearest cent, i.e., we know

$$
\tilde{P}\left(t_{k}\right)=P\left(t_{k}\right)+\epsilon_{k}
$$

where $\left|\epsilon_{k}\right| \leq 0.005$ dollars.
Our estimate of $P^{\prime}\left(t_{k}\right)$ is then

$$
P^{\prime}\left(t_{k}\right) \approx \frac{\tilde{P}\left(t_{k+1}\right)-\tilde{P}\left(t_{k-1}\right)}{2 \Delta t}
$$

What's Wrong?

We don't really know $P\left(t_{k}\right)$, but $P\left(t_{k}\right)$ rounded to the nearest cent, i.e., we know

$$
\tilde{P}\left(t_{k}\right)=P\left(t_{k}\right)+\epsilon_{k}
$$

where $\left|\epsilon_{k}\right| \leq 0.005$ dollars.
Our estimate of $P^{\prime}\left(t_{k}\right)$ is then

$$
\begin{aligned}
P^{\prime}\left(t_{k}\right) & \approx \underbrace{\frac{\tilde{P}\left(t_{k+1}\right)-\tilde{P}\left(t_{k-1}\right)}{2 \Delta t}}_{\text {better as } \Delta t \rightarrow 0} \\
& =\underbrace{\frac{P\left(t_{k+1}\right)-P\left(t_{k-1}\right)}{2 \Delta t}}_{\text {may blow up as } \Delta t \rightarrow 0}+\epsilon_{k+1}^{\frac{\epsilon_{k+1}-\epsilon_{k-1}}{2 \Delta t}} .
\end{aligned}
$$

Computing f^{\prime}

If we have noisy data $f_{k}=f\left(t_{k}\right)+\epsilon_{k}$ where ϵ_{k} is noise of fixed magnitude and approximate

$$
f^{\prime}\left(t_{k}\right) \approx \frac{f_{k+1}-f_{k}}{\Delta t}
$$

Computing f^{\prime}

If we have noisy data $f_{k}=f\left(t_{k}\right)+\epsilon_{k}$ where ϵ_{k} is noise of fixed magnitude and approximate

$$
\begin{aligned}
f^{\prime}\left(t_{k}\right) & \approx \frac{f_{k+1}-f_{k}}{\Delta t} \\
& =\underbrace{\frac{f\left(t_{k+1}\right)-f\left(t_{k}\right)}{\Delta t}}_{\text {better as } \Delta t \rightarrow 0}+\underbrace{\frac{\epsilon_{k+1}-\epsilon_{k}}{\Delta t}}_{\text {may blow up as } \Delta t \rightarrow 0} .
\end{aligned}
$$

Computing f^{\prime}

If we have noisy data $f_{k}=f\left(t_{k}\right)+\epsilon_{k}$ where ϵ_{k} is noise of fixed magnitude and approximate

$$
\begin{aligned}
f^{\prime}\left(t_{k}\right) & \approx \frac{f_{k+1}-f_{k}}{\Delta t} \\
& =\underbrace{\frac{f\left(t_{k+1}\right)-f\left(t_{k}\right)}{\Delta t}}_{\text {better as } \Delta t \rightarrow 0}+\underbrace{\frac{\epsilon_{k+1}-\epsilon_{k}}{\Delta t}}_{\text {may blow up as } \Delta t \rightarrow 0} .
\end{aligned}
$$

Depending on the sign of $\epsilon_{k+1}-\epsilon_{k}$, the estimate of $f^{\prime}\left(t_{k}\right)$ will be way high or low. The overall estimate of f^{\prime} will be highly oscillatory.

Noisy f^{\prime} Illustration

The blue curve is the graph of $f(t)$ (not $f^{\prime}(t)$), the red a plot of the noisy sampled values f_{k} :

The formula $f^{\prime}\left(t_{k}\right) \approx\left(f_{k+1}-f_{k}\right) / \Delta t$ estimates f^{\prime} as the slope of the red curve.

Alternate Approach to Computing f^{\prime}

Dumb Idea: Given data $f_{0}, f_{1}, \ldots, f_{n}$ (spacing Δt) estimate $f^{\prime}\left(t_{k}\right)$ as d_{k} where the d_{k} minimize

$$
Q\left(d_{0}, \ldots, d_{n-1}\right)=\sum_{k=0}^{n-1}\left(d_{k}-\frac{f_{k+1}-f_{k}}{\Delta t}\right)^{2}
$$

Alternate Approach to Computing f^{\prime}

Dumb Idea: Given data $f_{0}, f_{1}, \ldots, f_{n}($ spacing $\Delta t)$ estimate $f^{\prime}\left(t_{k}\right)$ as d_{k} where the d_{k} minimize

$$
Q\left(d_{0}, \ldots, d_{n-1}\right)=\sum_{k=0}^{n-1}\left(d_{k}-\frac{f_{k+1}-f_{k}}{\Delta t}\right)^{2}
$$

But Q is a sum of squares-the minimum occurs when $d_{k}=\left(f_{k+1}-f_{k}\right) / \Delta t$ as before. This gives the exactly the same (bad) estimate as before.

An Improvement

Good Idea: Add to Q a term that (from the minimization perspective) penalizes highly oscillatory values for the d_{k} :

$$
Q\left(d_{0}, \ldots, d_{n-1}\right)=\sum_{k=0}^{n-1}\left(d_{k}-\frac{f_{k+1}-f_{k}}{\Delta t}\right)^{2}
$$

An Improvement

Good Idea: Add to Q a term that (from the minimization perspective) penalizes highly oscillatory values for the d_{k} :

$$
Q\left(d_{0}, \ldots, d_{n-1}\right)=\sum_{k=0}^{n-1}\left(d_{k}-\frac{f_{k+1}-f_{k}}{\Delta t}\right)^{2}+\underbrace{\frac{\alpha}{2} \sum_{k=0}^{n-2}\left(\frac{d_{k+1}-d_{k}}{\Delta t}\right)^{2}}_{\text {regularization term }}
$$

The parameter α is called the regularization parameter. We can adjust it.

Example

Actual function $f(t)=t+\sin (3 t)$ on $0 \leq t \leq 1$ sampled at 100 points, noise of magnitude 0.01 added to each sample. Here's the straight $(\alpha=0)$ estimate of f^{\prime}.

Example

The result with $\alpha=10^{-4}$

True and Estimated Derivative

Example

The result with $\alpha=10^{-2}$

True and Estimated Derivative

Example

The result with $\alpha=0.1$

True and Estimated Derivative

Example

The result with $\alpha=1.0$

True and Estimated Derivative

Choosing α

There are a variety of approaches to choosing α, all based on some analysis of the ill-posedness of the inverse problem and noise level in the data.

Choosing α

There are a variety of approaches to choosing α, all based on some analysis of the ill-posedness of the inverse problem and noise level in the data.
One practical approach to real problems is simulation to see what range for α works best.

A 1D Version: The Forward Problem

A "1D" bar, length one meter, stretching along the x-axis from $0<x<1$ in 3D space, density $\lambda^{*}(x) \mathrm{Kg}$ per meter of length. It has some gravitational field \mathbf{F}.

The Inverse Problem

Suppose we measure only the z component of the gravitational field, and only at points of the form $x_{0}=t, y_{0}=0, z_{0}=1$.

The Inverse Problem

Can we find $\lambda^{*}(x)$ from $\mathbf{F}_{\mathbf{z}}(t, 0,1)$ and

$$
\mathbf{F}_{z}(t, 0,1)=\int_{0}^{1} \frac{\lambda^{*}(x)}{\left((x-t)^{2}+1\right)^{3 / 2}} d x
$$

The Inverse Problem

Can we find $\lambda^{*}(x)$ from $\mathbf{F}_{z}(t, 0,1)$ and

$$
\mathbf{F}_{z}(t, 0,1)=\int_{0}^{1} \frac{\lambda^{*}(x)}{\left((x-t)^{2}+1\right)^{3 / 2}} d x
$$

One can prove this is possible, but the problem is unstable.

Example

Suppose $\lambda^{*}(x)=2+x \sin (8 x)$:

Let's try to fit $\lambda(x)=\sum_{k=0}^{10} a_{k} \cos (k \pi x)$ using least-squares.

Example

We take data at 40 points from $t=-2$ to $t=2$:

Finding λ^{*} : Output Least Squares

If $\lambda^{*}(x)$ is the real density, let

$$
h_{k}^{*}=\int_{0}^{1} \frac{\lambda^{*}(x)}{\left(\left(x-t_{k}\right)^{2}+1\right)^{3 / 2}} d x
$$

(So h_{k}^{*} is the real gravitational field at the point $\left(t_{k}, 0,1\right)$).

Finding λ^{*} : Output Least Squares

If $\lambda^{*}(x)$ is the real density, let

$$
h_{k}^{*}=\int_{0}^{1} \frac{\lambda^{*}(x)}{\left(\left(x-t_{k}\right)^{2}+1\right)^{3 / 2}} d x
$$

(So h_{k}^{*} is the real gravitational field at the point $\left(t_{k}, 0,1\right)$).
Let

$$
h_{k}\left(a_{0}, a_{1}, \ldots, a_{10}\right)=\int_{0}^{1} \frac{\lambda(x)}{\left(\left(x-t_{k}\right)^{2}+1\right)^{3 / 2}} d x
$$

We want to adjust a_{0}, \ldots, a_{10} to make $h_{k}\left(a_{0}, \ldots, a_{10}\right) \approx h_{k}^{*}$, for all k.

Finding λ : Output Least Squares

Define the objective "fit-to-data" function

$$
Q\left(a_{0}, \ldots, a_{10}\right)=\sum_{k=1}^{M}\left(h_{k}\left(a_{0}, \ldots, a_{10}\right)-h_{k}^{*}\right)^{2}
$$

Finding λ : Output Least Squares

Define the objective "fit-to-data" function

$$
Q\left(a_{0}, \ldots, a_{10}\right)=\sum_{k=1}^{M}\left(h_{k}\left(a_{0}, \ldots, a_{10}\right)-h_{k}^{*}\right)^{2}
$$

We settle for that a_{0}, \ldots, a_{10} that minimizes Q, then take $\lambda(x)=\sum_{k=0}^{10} a_{k} \cos (k \pi x)$ as our estimate of the density.

Gravitational Prospecting Again

The result (no noise in the data) is

This inverse problem is severely ill-posed!

Regularizing The Problem

Add to Q a term that penalizes oscillatory behavior:

$$
\begin{aligned}
Q\left(a_{0}, \ldots, a_{10}\right) & =\underbrace{\sum_{k=1}^{M}\left(h_{k}\left(a_{0}, \ldots, a_{10}\right)-h_{k}^{*}\right)^{2}}_{\text {fit to data }}+\underbrace{\alpha \int_{0}^{1}\left(\lambda^{\prime}(x)\right)^{2} d x}_{\text {penalty term }} \\
& =\underbrace{\sum_{k=1}^{M}\left(h_{k}\left(a_{0}, \ldots, a_{10}\right)-h_{k}^{*}\right)^{2}}_{\text {fit to data }}+\underbrace{\alpha\left(a_{0}^{2}+\frac{\pi^{2}}{2} \sum_{k=1}^{10} k^{2} a_{k}^{2}\right)}_{\text {penalty term }}
\end{aligned}
$$

Regularization Result

The result (no noise in the data) is

Regularization Result

Noise of magnitude 0.001 and $\alpha=10^{-7}$:

Regularization Result

Noise of magnitude 0.1 and $\alpha=10^{-4}$:

The General Framework for Tikhonov Regularization

We have a forward problem governed by an "operator" K :

$$
K: \lambda \longrightarrow \text { observed data. }
$$

The real parameter is λ^{*}, with real data d^{*}. We estimate λ^{*} by minimizing

$$
Q(\lambda)=\left\|K(\lambda)-d^{*}\right\|^{2}+\alpha P(\lambda)
$$

where $P(\lambda)$ is a term that penalizes the behavior we don't want to see in λ (e.g., oscillation).

Notes URL

www.rose-hulman.edu/~bryan/invprobs.html

