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A More Interesting Problem

Put P0 dollars at time t = 0 into a 401K with instantaneous return
rate r(t).

Forward Problem: Compute P(t) from P0 and r(t). This means
solving the DE

P ′(t) = r(t)P(t)

The solution is

P(t) = P0 exp

(∫ t

0
r(s) ds

)
.
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A More Interesting Problem

Inverse Problem: Estimate r(t) from P(t). This means finding
r(t) from the DE

P ′(t) = r(t)P(t).

The solution is just
r(t) = P ′(t)/P(t).

But it’s not as simple as it looks...
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Estimating the Interest Rate

Suppose we know P(t) at times tk = k∆t, k = 0, 1, 2, . . .,
rounded to the nearest penny of course. We can estimate

P ′(tk) ≈ P(tk+1)− P(tk−1)

2∆t

From r(t) = P ′(t)/P(t) we get

r(tk) ≈ P(tk+1)− P(tk−1)

2∆tP(tk)
.
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Example

Suppose r(t) = 0.04(3− 2 cos(2t) + t/3) on 0 ≤ t ≤ 5, with

P(0) = 100. If we use r(tk) ≈ P(tk+1)−P(tk−1)
2∆tP(tk ) with ∆t = 0.5 the

result is
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With ∆t = 0.05 the result is better:
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But with ∆t = 0.005 we get
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And ∆t = 0.0005 yields
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What’s Wrong?

We don’t really know P(tk), but P(tk) rounded to the nearest
cent, i.e., we know

P̃(tk) = P(tk) + εk

where |εk | ≤ 0.005 dollars.

Our estimate of P ′(tk) is then

P ′(tk) ≈ P̃(tk+1)− P̃(tk−1)

2∆t

=
P(tk+1)− P(tk−1)

2∆t︸ ︷︷ ︸
better as ∆t→0

+
εk+1 − εk−1

2∆t︸ ︷︷ ︸
may blow up as ∆t→0

.
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Computing f ′

If we have noisy data fk = f (tk) + εk where εk is noise of fixed
magnitude and approximate

f ′(tk) ≈ fk+1 − fk
∆t

=
f (tk+1)− f (tk)

∆t︸ ︷︷ ︸
better as ∆t→0

+
εk+1 − εk

∆t︸ ︷︷ ︸
may blow up as ∆t→0

.

Depending on the sign of εk+1 − εk , the estimate of f ′(tk) will be
way high or low. The overall estimate of f ′ will be highly
oscillatory.
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Noisy f ′ Illustration

The blue curve is the graph of f (t) (not f ′(t)), the red a plot of
the noisy sampled values fk :

The formula f ′(tk) ≈ (fk+1 − fk)/∆t estimates f ′ as the slope of
the red curve.
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Alternate Approach to Computing f ′

Dumb Idea: Given data f0, f1, . . . , fn (spacing ∆t) estimate f ′(tk)
as dk where the dk minimize

Q(d0, . . . , dn−1) =
n−1∑
k=0

(
dk −

fk+1 − fk
∆t

)2

.

But Q is a sum of squares—the minimum occurs when
dk = (fk+1 − fk)/∆t as before. This gives the exactly the same
(bad) estimate as before.
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An Improvement

Good Idea: Add to Q a term that (from the minimization
perspective) penalizes highly oscillatory values for the dk :

Q(d0, . . . , dn−1) =
n−1∑
k=0

(
dk −

fk+1 − fk
∆t

)2

+
α

2

n−2∑
k=0

(
dk+1 − dk

∆t

)2

.︸ ︷︷ ︸
regularization term

The parameter α is called the regularization parameter. We can
adjust it.
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Example

Actual function f (t) = t + sin(3t) on 0 ≤ t ≤ 1 sampled at 100
points, noise of magnitude 0.01 added to each sample. Here’s the
straight (α = 0) estimate of f ′.

Kurt Bryan Inverse Problems 3: Why Differentiation is Harder than Integration



Outline
Computing Derivatives

Why Derivatives Are Hard (And What To Do About It)
The Gravity Problem

Optimization Approach
Tikhonov Regularization

Example

The result with α = 10−4
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The result with α = 0.1
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Example

The result with α = 1.0
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Choosing α

There are a variety of approaches to choosing α, all based on some
analysis of the ill-posedness of the inverse problem and noise level
in the data.

One practical approach to real problems is simulation to see what
range for α works best.
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A 1D Version: The Forward Problem

A “1D” bar, length one meter, stretching along the x-axis from
0 < x < 1 in 3D space, density λ∗(x) Kg per meter of length. It
has some gravitational field F.
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The Inverse Problem

Suppose we measure only the z component of the gravitational
field, and only at points of the form x0 = t, y0 = 0, z0 = 1.
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The Inverse Problem

Can we find λ∗(x) from Fz(t, 0, 1) and

Fz(t, 0, 1) =

∫ 1

0

λ∗(x)

((x − t)2 + 1)3/2
dx

One can prove this is possible, but the problem is unstable.
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Example

Suppose λ∗(x) = 2 + x sin(8x):

Let’s try to fit λ(x) =
∑10

k=0 ak cos(kπx) using least-squares.
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Example

We take data at 40 points from t = −2 to t = 2:
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Finding λ∗: Output Least Squares

If λ∗(x) is the real density, let

h∗k =

∫ 1

0

λ∗(x)

((x − tk)2 + 1)3/2
dx .

(So h∗k is the real gravitational field at the point (tk , 0, 1)).

Let

hk(a0, a1, . . . , a10) =

∫ 1

0

λ(x)

((x − tk)2 + 1)3/2
dx .

We want to adjust a0, . . . , a10 to make hk(a0, . . . , a10) ≈ h∗k , for all
k .
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Finding λ: Output Least Squares

Define the objective “fit-to-data” function

Q(a0, . . . , a10) =
M∑
k=1

(hk(a0, . . . , a10)− h∗k)2.

We settle for that a0, . . . , a10 that minimizes Q, then take
λ(x) =

∑10
k=0 ak cos(kπx) as our estimate of the density.
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Gravitational Prospecting Again

The result (no noise in the data) is

This inverse problem is severely ill-posed!
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Regularizing The Problem

Add to Q a term that penalizes oscillatory behavior:

Q(a0, . . . , a10) =
M∑
k=1

(hk(a0, . . . , a10)− h∗k)2

︸ ︷︷ ︸
fit to data

+α

∫ 1

0
(λ′(x))2 dx︸ ︷︷ ︸

penalty term

=
M∑
k=1

(hk(a0, . . . , a10)− h∗k)2

︸ ︷︷ ︸
fit to data

+α

(
a2

0 +
π2

2

10∑
k=1

k2a2
k

)
︸ ︷︷ ︸

penalty term

.
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Regularization Result

The result (no noise in the data) is
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Regularization Result

Noise of magnitude 0.001 and α = 10−7:
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Regularization Result

Noise of magnitude 0.1 and α = 10−4:
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The General Framework for Tikhonov Regularization

We have a forward problem governed by an “operator” K :

K : λ −→ observed data.

The real parameter is λ∗, with real data d∗. We estimate λ∗ by
minimizing

Q(λ) = ‖K (λ)− d∗‖2 + αP(λ)

where P(λ) is a term that penalizes the behavior we don’t want to
see in λ (e.g., oscillation).
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Notes URL

www.rose-hulman.edu/˜bryan/invprobs.html
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