Introduction to Inverse Problems II

Kurt Bryan

April 21, 2011

Kurt Bryan Introduction to Inverse Problems II

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Outline

Gravitational Prospecting Output Least Squares Pros and Cons

Gravitational Prospecting

- Introduction
- A 1D Version

Output Least Squares

- Application to Gravitational Problem
- General Least-Squares
- III-Posedness
- Spring-Mass Inverse Problem

Pros and Cons

The Earth

Introduction A 1D Version

Earth's gravitational field is not perfectly spherical, because the earth is not of uniform density (nor perfectly spherical).

The Earth

Introduction A 1D Version

A rendition of the gravitational variation based on data from the Goce (Gravity Field and Steady-State Ocean Circulation Explorer) satellite; measurements accurate to one part per trillion!

http://www.bbc.co.uk/news/science-environment-12911806, March 31 2011.

Kurt Bryan Introduction to Inverse Problems II

Introduction A 1D Version

The Goce Satellite

This picture has no intellectual content, but it looks pretty cool.

Image: A = A

-∢ ≣ →

Introduction A 1D Version

The Forward and Inverse Problems

Forward Problem: Given the density $\rho(x, y, z)$ of the earth, compute the gravitational field $\mathbf{F}(x_0, y_0, z_0)$ at some point in space.

Introduction A 1D Version

The Forward and Inverse Problems

Forward Problem: Given the density $\rho(x, y, z)$ of the earth, compute the gravitational field $\mathbf{F}(x_0, y_0, z_0)$ at some point in space.

Inverse Problem: Given measurements of the gravitational field $F(x_0, y_0, z_0)$, find the density function $\rho(x, y, z)$.

(*) *) *) *)

Introduction A 1D Version

A 1D Version: The Forward Problem

A "1D" bar, length one meter, stretching along the x-axis from 0 < x < 1 in 3D space, density $\lambda^*(x)$ Kg per meter of length:

Introduction A 1D Version

A 1D Version: The Forward Problem

A short dx piece of the bar at position (x, 0, 0) has mass $\lambda^*(x) dx$ and gravitational field

$$d\mathbf{F}(x_0, y_0, z_0) = \frac{G < x - x_0, -y_0, -z_0 > \lambda^*(x) \, dx}{((x - x_0)^2 + y_0^2 + z_0^2)^{3/2}}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Introduction A 1D Version

A 1D Version: The Forward Problem

A short dx piece of the bar at position (x, 0, 0) has mass $\lambda^*(x) dx$ and gravitational field

$$d\mathbf{F}(x_0, y_0, z_0) = \frac{G < x - x_0, -y_0, -z_0 > \lambda^*(x) \, dx}{((x - x_0)^2 + y_0^2 + z_0^2)^{3/2}}.$$

The total field $\mathbf{F}(x_0, y_0, z_0)$ is the sum

$$\mathbf{F}(x_0, y_0, z_0) = \int_0^1 d\mathbf{F}.$$

★ Ξ ► < Ξ ►</p>

Introduction A 1D Version

The Inverse Problem

Suppose we measure only the *z* component of **F**, and only at points of the form $x_0 = t$, $y_0 = 0$, $z_0 = 1$ (the blue line).

Introduction A 1D Version

The Inverse Problem

In summary, we measure the quantity

$${\sf F}_z(t,0,1)=\int_0^1rac{\lambda^*(x)}{((x-t)^2+1)^{3/2}}\,dx$$

(set G = 1 for simplicity) for some range of t, say $-1 \le t \le 1$.

Is this enough information to determine $\lambda^*(x)$?

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction A 1D Version

Example

Suppose $\lambda^*(x) = 2 + \sin(x)$. A plot of $\lambda^*(x)$ and $\mathbf{F}_z(t, 0, 1)$:

Is $\lambda^*(x)$ encoded in the graph on the right?

A 10

.⊒ . ►

3.5

Introduction A 1D Version

Existence and Uniqueness

It can be shown via Fourier integral transforms that if the function h(t) in

$$\int_0^1 \frac{\lambda^*(x)}{((x-t)^2+1)^{3/2}} \, dx = h(t)$$

is well-behaved on some interval a < t < b then there is a unique solution $\lambda^*(x)$.

We'll just assume away this problem, by supposing our data came from an actual λ^* .

化氯化 化氯化

Introduction A 1D Version

Discrete Data

We wouldn't really have the function $\mathbf{F}_z(t, 0, 1)$, just measurements at discrete points $t = t_1, t_2, \ldots, t_M$:

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

Finding λ^* : Output Least Squares

Look for the density in the form

$$\lambda(x)=a_0+a_1x+a_2x^2,$$

a quadratic polynomial.

・ 同 ト ・ ヨ ト ・ ヨ ト

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

Finding λ^* : Output Least Squares

Look for the density in the form

$$\lambda(x)=a_0+a_1x+a_2x^2,$$

a quadratic polynomial.

Goal: adjust a_0, a_1, a_2 so this hypothetical density reproduces the real data as closely as possible when we plug λ into the forward model.

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

Finding λ^* : Output Least Squares

If $\lambda^*(x)$ is the real density, let

$$h_k^* = \int_0^1 rac{\lambda^*(x)}{((x-t_k)^2+1)^{3/2}}\,dx.$$

(So h_k^* is the real gravitational field at the point $(t_k, 0, 1)$).

・ 同 ト ・ ヨ ト ・ ヨ ト

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

Finding λ^* : Output Least Squares

If $\lambda^*(x)$ is the real density, let

$$h_k^* = \int_0^1 rac{\lambda^*(x)}{((x-t_k)^2+1)^{3/2}}\,dx.$$

(So h_k^* is the real gravitational field at the point $(t_k, 0, 1)$). Let

$$h_k(a_0, a_1, a_2) = \int_0^1 \frac{a_0 + a_1 x + a_2 x^2}{((x - t_k)^2 + 1)^{3/2}} dx.$$

We want to adjust a_0, a_1, a_2 to make $h_k(a_0, a_1, a_2) \approx h_k^*$, for all k.

(4月) (4日) (4日)

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

Finding λ : Output Least Squares

Define the objective "fit-to-data" function

$$Q(a_0, a_1, a_2) = \sum_{k=1}^{M} (h_k(a_0, a_1, a_2) - h_k^*)^2.$$

イロト イポト イヨト イヨト

э

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

Finding λ : Output Least Squares

Define the objective "fit-to-data" function

$$Q(a_0, a_1, a_2) = \sum_{k=1}^{M} (h_k(a_0, a_1, a_2) - h_k^*)^2.$$

We settle for that a_0, a_1, a_2 that minimizes Q, then take $\lambda(x) = a_0 + a_1x + a_2x^2$ as our estimate of the density.

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

Finding λ : Output Least Squares

The minimum occurs at $a_0 \approx 1.9924$, $a_1 \approx 1.0914$, $a_2 \approx -0.2352$, i.e., $\lambda(x) \approx 1.9924 + 1.0914x - 0.2352x^2$.

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

Finding λ : Output Least Squares

If we add noise to the data (uniform in the range -0.005 to 0.005) we obtain

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

General Least Squares Framework

We adjust λ to minimize ||measured data - simulated data||².

- R

Outline Application to Gravitational Problem Gravitational Prospecting General Least-Squares Ultput Least Squares IIII-Posedness Pros and Cons Spring-Mass Inverse Problem

Gravitational Prospecting Again

Suppose $\lambda^*(x) = 2 + x \sin(8x)$:

Let's try to fit $\lambda(x) = \sum_{k=0}^{10} a_k \cos(k\pi x)$.

Outline **Output Least Squares III-Posedness** Pros and Cons

Gravitational Prospecting Again

The result (no noise in the data) is

This inverse problem is severely ill-posed!

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

A Slight Improvement

Moving the gravimeter closer to the bar improves stability.

< ∃⇒

Outline Application to Gravitational Prospecting General Least-Squares
Output Least Squares
Pros and Cons Spring-Mass Inverse Problem

Gravitational Prospecting Again

The result (no noise in the data) is

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

Spring-Mass Inverse Problem

A spring-mass system governed by x''(t) + cx'(t) + kx(t) = 0, x(0) = 1, x'(0) = 0. We want to find true c^*, k^* from data points $x^*(1), x^*(2), \ldots, x^*(10)$.

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

Spring-Mass Inverse Problem

Let x(t) be the solution to x''(t) + cx'(t) + kx(t) = 0:

$$x(t) = e^{-ct/2} \left(\cos(\omega t) + \frac{c}{2\omega} \sin(\omega t) \right)$$

with $\omega = \sqrt{4k - c^2}/2$.

- 4 同 2 4 日 2 4 日 2

э

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

Spring-Mass Inverse Problem

Let x(t) be the solution to x''(t) + cx'(t) + kx(t) = 0:

$$x(t) = e^{-ct/2} \left(\cos(\omega t) + \frac{c}{2\omega} \sin(\omega t) \right)$$

with
$$\omega = \sqrt{4k - c^2}/2$$
.

We'll minimize

$$Q(c,k) = \sum_{j=0}^{10} (x(j) - x^*(j))^2.$$

- 4 同 2 4 日 2 4 日 2

э

Application to Gravitational Problem General Least-Squares III-Posedness Spring-Mass Inverse Problem

Objective Function Plot

The objective function has many local minima!

< 6 >

 Outline
 Application to Gravitational Problem

 Gravitational Prospecting
 General Least-Squares

 Output Least Squares
 III-Posedness

 Pros and Cons
 Spring-Mass Inverse Problem

The Damping and Spring Estimates

The true damping and spring constants are $c^* = 0.23$ and $k^* = 3.81$. Depending on our starting point for the optimizer we get the correct values, or (c, k) = (0.23, 18.94), (c, k) = (0.23, 67.6), many others. All fit the data well:

Least-Squares Pros and Cons

Pros:

• Plug and play: only need forward solver and optimization software.

* E > * E >

э

Least-Squares Pros and Cons

Pros:

• Plug and play: only need forward solver and optimization software.

Cons:

• Computationally intensive.

ヨート

Least-Squares Pros and Cons

Pros:

• Plug and play: only need forward solver and optimization software.

Cons:

- Computationally intensive.
- May generate nonsense if no solution, or solution not unique.

Least-Squares Pros and Cons

Pros:

• Plug and play: only need forward solver and optimization software.

Cons:

- Computationally intensive.
- May generate nonsense if no solution, or solution not unique.
- May get stuck in local min that's not the real solution.

Least-Squares Pros and Cons

Pros:

• Plug and play: only need forward solver and optimization software.

Cons:

- Computationally intensive.
- May generate nonsense if no solution, or solution not unique.
- May get stuck in local min that's not the real solution.
- Doesn't address ill-posedness of the inverse problem.