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Gravitational Prospecting Introduction
A 1D Version

Earth's gravitational field is not perfectly spherical, because the
earth is not of uniform density (nor perfectly spherical).
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Gravitational Prospecting Introduction
A 1D Version

A rendition of the gravitational variation based on data from the
Goce (Gravity Field and Steady-State Ocean Circulation Explorer)
satellite; measurements accurate to one part per trillion!

http://www.bbc.co.uk/news/science-environment-12911806,
March 31 2011.



Gravitational Prospecting Introduction
A 1D Version

The Goce Satellite

This picture has no intellectual content, but it looks pretty cool.
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Gravitational Prospecting Introduction
A 1D Version

The Forward and Inverse Problems

Forward Problem: Given the density p(x,y, z) of the earth,
compute the gravitational field F(xo, yo, z0) at some point in space.
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Gravitational Prospecting Introduction
A 1D Version

The Forward and Inverse Problems

Forward Problem: Given the density p(x,y, z) of the earth,
compute the gravitational field F(xo, yo, z0) at some point in space.

Inverse Problem: Given measurements of the gravitational field
F(xo, 0, 20), find the density function p(x,y, z).
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Gravitational Prospecting Introduction
A 1D Version

A 1D Version: The Forward Problem

A “1D” bar, length one meter, stretching along the x-axis from
0 < x < 1in 3D space, density A*(x) Kg per meter of length:
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Gravitational Prospecting Introduction
A 1D Version

A 1D Version: The Forward Problem

A short dx piece of the bar at position (x,0,0) has mass \*(x) dx
and gravitational field

G < x — X0, —Y0, —20 > \*(x) dx
(%07 + 73 + B

dF(xo, Yo, 20) =
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Gravitational Prospecting Introduction
A 1D Version

A 1D Version: The Forward Problem

A short dx piece of the bar at position (x,0,0) has mass \*(x) dx
and gravitational field

G < x — X0, —Y0, —20 > \*(x) dx
(%07 + 73 + B

dF(xo, Yo, 20) =

The total field F(xo, yo0, 20) is the sum

1
F(Xo,yO,Zo):/ dF.
0
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Gravitational Prospecting Introduction
A 1D Version

The Inverse Problem

Suppose we measure only the z component of F, and only at
points of the form xp = t, o = 0,29 = 1 (the blue line).
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Gravitational Prospecting Introduction
A 1D Version

The Inverse Problem

In summary, we measure the quantity

1 A" (x
F.(1,0,1) :/0 o t)§+)1)3/2 i

(set G =1 for simplicity) for some range of t, say —1 < t < 1.

Is this enough information to determine \*(x)?
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Gravitational Prospecting Introduction

A 1D Version

Example

Suppose A*(x) = 2 +sin(x). A plot of \*(x) and F,(¢t,0,1):
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2.2

Is \*(x) encoded in the graph on the right?
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Gravitational Prospecting Introduction
A 1D Version

Existence and Uniqueness

It can be shown via Fourier integral transforms that if the function

h(t) in 1 "
/o ((x — t)2 4+ 1)3/2 dx = h(t)

is well-behaved on some interval a < t < b then there is a unique
solution \*(x).

We'll just assume away this problem, by supposing our data came
from an actual A\*.
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Gravitational Prospecting Introduction
A 1D Version

Discrete Data

We wouldn't really have the function F,(t,0,1), just
measurements at discrete points t = t, to, ..., ty:
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Application to Gravitational Problem
General Least-Squares

Ill-Posedness

Spring-Mass Inverse Problem

Output Least Squares

Finding A*: Output Least Squares

Look for the density in the form

A(x) = ap + a1x + x>,

a quadratic polynomial.
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Application to Gravitational Problem
General Least-Squares

Output Least Squares Ill-Posedness
Spring-Mass Inverse Problem

Finding A*: Output Least Squares

Look for the density in the form
M%) = ao + a1x + axx?,

a quadratic polynomial.

Goal: adjust ag, a1, a» so this hypothetical density reproduces the
real data as closely as possible when we plug A into the forward
model.
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Application to Gravitational Problem
General Least-Squares

Ill-Posedness

Spring-Mass Inverse Problem

Output Least Squares

Finding A*: Output Least Squares

If \*(x) is the real density, let

T
=), e

(So hy is the real gravitational field at the point (tx,0,1)).
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Application to Gravitational Problem
General Least-Squares

Ill-Posedness

Spring-Mass Inverse Problem

Output Least Squares

Finding A*: Output Least Squares

If \*(x) is the real density, let

T
=), e

(So hy is the real gravitational field at the point (tx,0,1)).
Let

A (1 ap+ aix + apx?
k(0, a1, a2) = RS ke

We want to adjust ag, a1, a> to make hy(ao, a1, a2) ~ hy, for all k.
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Application to Gravitational Problem
General Least-Squares

Ill-Posedness

Spring-Mass Inverse Problem

Output Least Squares

Finding \: Output Least Squares

Define the objective “fit-to-data” function

M

Q(a0,a1,32) = > (hi(a0, a1, @2) — hi)>.

k=1
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Application to Gravitational Problem
General Least-Squares

Ill-Posedness

Spring-Mass Inverse Problem

Output Least Squares

Finding \: Output Least Squares

Define the objective “fit-to-data” function

M

Q(a0,a1,32) = > (hi(a0, a1, @2) — hi)>.

k=1

We settle for that ag, a1, a> that minimizes Q, then take
A(x) = ag + a1x + a»x? as our estimate of the density.
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Application to Gravitational Problem
General Least-Squares

Output Least Squares Ill-Posedness
Spring-Mass Inverse Problem

Finding \: Output Least Squares

The minimum occurs at ag &~ 1.9924, a; ~ 1.0914, a, ~ —0.2352,
i.e., A\(x)~ 1.9924 + 1.0914x — 0.2352x2.

True and Recovered Density

b
it

26

N
fo

ko

02 04 _ 06 08 1
X

Kurt Bryan Introduction to Inverse Problems Il

o_



Application to Gravitational Problem
General Least-Squares

Ill-Posedness

Spring-Mass Inverse Problem

Finding \: Output Least Squares

Output Least Squares

If we add noise to the data (uniform in the range —0.005 to 0.005)
we obtain

True and Recovered Density
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Application to Gravitational Problem
General Least-Squares

Output Least Squares Ill-Posedness
Spring-Mass Inverse Problem

General Least Squares Framework

Physical Parameter Real St Measured  Hypothetical Parameter | Mathematical Simulated
(embde ) — "B ——aa  (mbda) —( Mol  —Data

We adjust A to minimize ||measured data — simulated data/|?.
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Application to Gravitational Problem
General Least-Squares

Output Least Squares Ill-Posedness
Spring-Mass Inverse Problem

Gravitational Prospecting Again

Suppose A*(x) = 2 + xsin(8x):

Let's try to fit A(x) = le(ozo ay cos(kmx).
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Application to Gravitational Problem
General Least-Squares

Output Least Squares Ill-Posedness
Spring-Mass Inverse Problem

Gravitational Prospecting Again

The result (no noise in the data) is

True and Recovered Density
1500+

m/xm/\/\vﬁ
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This inverse problem is severely ill-posed!
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Application to Gravitational Problem
General Least-Squares
Output Least Squares Ill-Posedness

Spring-Mass Inverse Problem

A Slight Improvement

Moving the gravimeter closer to the bar improves stability.
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Application to Gravitational Problem
General Least-Squares

Output Least Squares Ill-Posedness
Spring-Mass Inverse Problem

Gravitational Prospecting Again

The result (no noise in the data) is

True and Recovered Density
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Application to Gravitational Problem
General Least-Squares

Output Least Squares Ill-Posedness
Spring-Mass Inverse Problem

Spring-Mass Inverse Problem

A spring-mass system governed by x”(t) + cx'(t) + kx(t) =0,
x(0) = 1,x'(0) = 0. We want to find true c*, k* from data points
x*(1),x*(2),...,x*(10).
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Application to Gravitational Problem
General Least-Squares

Output Least Squares Ill-Posedness
Spring-Mass Inverse Problem

Spring-Mass Inverse Problem

Let x(t) be the solution to x”(t) + cx/(t) + kx(t) = 0:
_ a—Ct/2 <
x(t)=e (cos(wt) + 5 sm(wt))

with w = V4k — ¢?/2.
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Application to Gravitational Problem
General Least-Squares

Output Least Squares Ill-Posedness
Spring-Mass Inverse Problem

Spring-Mass Inverse Problem

Let x(t) be the solution to x”(t) + cx/(t) + kx(t) = 0:
_ a—Ct/2 <
x(t)=e (cos(wt) + 5 sm(wt))
with w = V4k — ¢?/2.

We'll minimize

Kurt Bryan Introduction to Inverse Problems Il



Application to Gravitational Problem
General Least-Squares

Output Least Squares Ill-Posedness
Spring-Mass Inverse Problem

ective Function Plot

The objective function has many local minima!
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Application to Gravitational Problem
General Least-Squares

Output Least Squares Ill-Posedness
Spring-Mass Inverse Problem

The Damping and Spring Estimates

The true damping and spring constants are c* = 0.23 and

k* = 3.81. Depending on our starting point for the optimizer we
get the correct values, or (c, k) = (0.23,18.94),

(c, k) =(0.23,67.6), many others. All fit the data well:

1
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Pros and Cons

Least-Squares Pros and Cons

Pros:

@ Plug and play: only need forward solver and optimization
software.
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Pros and Cons

Least-Squares Pros and Cons

Pros:

@ Plug and play: only need forward solver and optimization
software.

Cons:

o Computationally intensive.
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Pros and Cons

Least-Squares Pros and Cons

Pros:

@ Plug and play: only need forward solver and optimization
software.

Cons:
o Computationally intensive.

@ May generate nonsense if no solution, or solution not unique.
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Pros and Cons

Least-Squares Pros and Cons

Pros:

@ Plug and play: only need forward solver and optimization
software.

Cons:
o Computationally intensive.
@ May generate nonsense if no solution, or solution not unique.

@ May get stuck in local min that's not the real solution.
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Pros and Cons

Least-Squares Pros and Cons

Pros:

@ Plug and play: only need forward solver and optimization
software.

Cons:
o Computationally intensive.
@ May generate nonsense if no solution, or solution not unique.
@ May get stuck in local min that's not the real solution.

@ Doesn't address ill-posedness of the inverse problem.
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