Introduction to Inverse Problems

Kurt Bryan

April 26, 2011
(1) An Inverse Problem

- An Experiment
- Analysis of the Pendulum
(2) Something More "Interesting"
- Another Inverse Problem
- Discrete Data
- Failure

The Pendulum

The period P of a pendulum is $P \approx 2 \pi \sqrt{L / g}$.

We can turn this around to find $g \approx 4 \pi^{2} L / P^{2}$.

Forward and Inverse Problems

The Forward Problem:

- Physical: Given the pendulum (specified length, gravity known) how does it behave (what's P)?

Forward and Inverse Problems

The Forward Problem:

- Physical: Given the pendulum (specified length, gravity known) how does it behave (what's P)?
- Mathematics: Given g and L, compute $P=2 \pi \sqrt{L / g}$.

Forward and Inverse Problems

The Forward Problem:

- Physical: Given the pendulum (specified length, gravity known) how does it behave (what's P)?
- Mathematics: Given g and L, compute $P=2 \pi \sqrt{L / g}$.

The Inverse Problem:

Forward and Inverse Problems

The Forward Problem:

- Physical: Given the pendulum (specified length, gravity known) how does it behave (what's P)?
- Mathematics: Given g and L, compute $P=2 \pi \sqrt{L / g}$.

The Inverse Problem:

- Physical: Given measured data (length) and/or observed behavior (the period) estimate an unknown parameter (gravity).

Forward and Inverse Problems

The Forward Problem:

- Physical: Given the pendulum (specified length, gravity known) how does it behave (what's P)?
- Mathematics: Given g and L, compute $P=2 \pi \sqrt{L / g}$.

The Inverse Problem:

- Physical: Given measured data (length) and/or observed behavior (the period) estimate an unknown parameter (gravity).
- Mathematics: Given L and P in $P=2 \pi \sqrt{L / g}$, find g.

Inverse Problem Issues

(1) Existence: Is there a solution g to $P=2 \pi \sqrt{L / g}$ if L and P are known?

Inverse Problem Issues

(1) Existence: Is there a solution g to $P=2 \pi \sqrt{L / g}$ if L and P are known?
(2) Uniqueness: Is the solution g to $P=2 \pi \sqrt{L / g}$ unique?

Inverse Problem Issues

(1) Existence: Is there a solution g to $P=2 \pi \sqrt{L / g}$ if L and P are known?
(2) Uniqueness: Is the solution g to $P=2 \pi \sqrt{L / g}$ unique?
(3) Stability: Do small errors in L and P induce small errors in g ?

Inverse Problem Issues

(1) Existence: Is there a solution g to $P=2 \pi \sqrt{L / g}$ if L and P are known?
(2) Uniqueness: Is the solution g to $P=2 \pi \sqrt{L / g}$ unique?
(3) Stability: Do small errors in L and P induce small errors in g ?
(9) Reconstruction: How can we find g from L and P ?

Stability

From Calc 3, if $g=4 \pi^{2} L / P^{2}$ then

$$
\begin{aligned}
\Delta g & =\frac{\partial g}{\partial L} \Delta L+\frac{\partial g}{\partial P} \Delta P \\
& =\frac{4 \pi^{2}}{P^{2}} \Delta L-\frac{8 \pi^{2} L}{P^{3}} \Delta P
\end{aligned}
$$

Stability

From Calc 3, if $g=4 \pi^{2} L / P^{2}$ then

$$
\begin{aligned}
\Delta g & =\frac{\partial g}{\partial L} \Delta L+\frac{\partial g}{\partial P} \Delta P \\
& =\frac{4 \pi^{2}}{P^{2}} \Delta L-\frac{8 \pi^{2} L}{P^{3}} \Delta P
\end{aligned}
$$

Divide by $=4 \pi^{2} L / P^{2}$ to find

$$
\frac{\Delta g}{g}=\frac{\Delta L}{L}-2 \frac{\Delta P}{P} .
$$

This inverse problem is stable.

A More Interesting Problem

Put P_{0} dollars at time $t=0$ into a 401 K with instantaneous return rate $r(t)$.

A More Interesting Problem

Put P_{0} dollars at time $t=0$ into a 401 K with instantaneous return rate $r(t)$.

Forward Problem: Compute $P(t)$ from P_{0} and $r(t)$. This means solving the DE

$$
P^{\prime}(t)=r(t) P(t)
$$

A More Interesting Problem

Put P_{0} dollars at time $t=0$ into a 401 K with instantaneous return rate $r(t)$.

Forward Problem: Compute $P(t)$ from P_{0} and $r(t)$. This means solving the DE

$$
P^{\prime}(t)=r(t) P(t)
$$

The solution is

$$
P(t)=P_{0} \exp \left(\int_{0}^{t} r(s) d s\right)
$$

A More Interesting Problem

Inverse Problem: Estimate $r(t)$ from $P(t)$. This means finding $r(t)$ from the DE

$$
P^{\prime}(t)=r(t) P(t)
$$

A More Interesting Problem

Inverse Problem: Estimate $r(t)$ from $P(t)$. This means finding $r(t)$ from the DE

$$
P^{\prime}(t)=r(t) P(t)
$$

The solution is just

$$
r(t)=P^{\prime}(t) / P(t)
$$

But it's not as simple as it looks...

Estimating the Interest Rate

Suppose we know $P(t)$ at times $t_{k}=k \Delta t, k=0,1,2, \ldots$, rounded to the nearest penny of course. We can estimate

$$
P^{\prime}\left(t_{k}\right) \approx \frac{P\left(t_{k+1}\right)-P\left(t_{k-1}\right)}{2 \Delta t}
$$

Estimating the Interest Rate

Suppose we know $P(t)$ at times $t_{k}=k \Delta t, k=0,1,2, \ldots$, rounded to the nearest penny of course. We can estimate

$$
P^{\prime}\left(t_{k}\right) \approx \frac{P\left(t_{k+1}\right)-P\left(t_{k-1}\right)}{2 \Delta t}
$$

From $r(t)=P^{\prime}(t) / P(t)$ we get

$$
r\left(t_{k}\right) \approx \frac{P\left(t_{k+1}\right)-P\left(t_{k-1}\right)}{2 \Delta t P\left(t_{k}\right)}
$$

Example

Suppose $r(t)=0.04(3-2 \cos (2 t)+t / 3)$ on $0 \leq t \leq 5$, with $P(0)=100$. If we use $r\left(t_{k}\right) \approx \frac{P\left(t_{k+1}\right)-P\left(t_{k-1}\right)}{2 \Delta t P\left(t_{k}\right)}$ with $\Delta t=0.5$ the result is

Example

With $\Delta t=0.05$ the result is better:

True and Estimated Interest Rates

Example

But with $\Delta t=0.005$ we get

True and Estimated Interest Rates

Example

And $\Delta t=0.0005$ yields

True and Estimated Interest Rates

What's Wrong?

We don't really know $P\left(t_{k}\right)$, but $P\left(t_{k}\right)$ rounded to the nearest cent, i.e., we know

$$
\tilde{P}\left(t_{k}\right)=P\left(t_{k}\right)+\epsilon_{k}
$$

where $\left|\epsilon_{k}\right| \leq 0.005$ dollars.

What's Wrong?

We don't really know $P\left(t_{k}\right)$, but $P\left(t_{k}\right)$ rounded to the nearest cent, i.e., we know

$$
\tilde{P}\left(t_{k}\right)=P\left(t_{k}\right)+\epsilon_{k}
$$

where $\left|\epsilon_{k}\right| \leq 0.005$ dollars.
Our estimate of $P^{\prime}\left(t_{k}\right)$ is then

$$
P^{\prime}\left(t_{k}\right) \approx \frac{\tilde{P}\left(t_{k+1}\right)-\tilde{P}\left(t_{k-1}\right)}{2 \Delta t}
$$

What's Wrong?

We don't really know $P\left(t_{k}\right)$, but $P\left(t_{k}\right)$ rounded to the nearest cent, i.e., we know

$$
\tilde{P}\left(t_{k}\right)=P\left(t_{k}\right)+\epsilon_{k}
$$

where $\left|\epsilon_{k}\right| \leq 0.005$ dollars.
Our estimate of $P^{\prime}\left(t_{k}\right)$ is then

$$
\begin{aligned}
P^{\prime}\left(t_{k}\right) & \approx \frac{\tilde{P}\left(t_{k+1}\right)-\tilde{P}\left(t_{k-1}\right)}{2 \Delta t} \\
& =\underbrace{\frac{P\left(t_{k+1}\right)-P\left(t_{k-1}\right)}{2 \Delta t}}_{\text {better as } \Delta t \rightarrow 0}+\underbrace{\frac{\epsilon_{k+1}-\epsilon_{k-1}}{2 \Delta t}}_{\text {may blow up as } \Delta t \rightarrow 0} .
\end{aligned}
$$

Unstable Inverse Problems

- This is an example of an unstable inverse problem-more data is NOT better, at least not if handled naively.

Unstable Inverse Problems

- This is an example of an unstable inverse problem-more data is NOT better, at least not if handled naively.
- This is typically the case when solving the inverse problem involved estimating derivatives from data.

Unstable Inverse Problems

- This is an example of an unstable inverse problem-more data is NOT better, at least not if handled naively.
- This is typically the case when solving the inverse problem involved estimating derivatives from data.
- Lot's of inverse problems involve differentiating data, especially when the unknown is a function.

Unstable Inverse Problems

- This is an example of an unstable inverse problem-more data is NOT better, at least not if handled naively.
- This is typically the case when solving the inverse problem involved estimating derivatives from data.
- Lot's of inverse problems involve differentiating data, especially when the unknown is a function.
- We can stabilize or regularize the differentiation of data using a variety of techniques.

Other Basic Issues

- Is the unknown discrete or continuous?

Other Basic Issues

- Is the unknown discrete or continuous?
- Linearity-does the unknown depend linearly on the data, or nonlinearly?

Notes URL

www.rose-hulman.edu/~bryan/invprobs.html

