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A typical color image might be 600 by 800 pixels.

Each pixel has a red (R), green (G) and blue (B) value
associated to it.

Each pixel needs 3 bytes of storage (one for each color).

That’s 600× 800× 3 = 1.44 megabytes.

But a typical 600 by 800 JPEG image takes only about 120
kilobytes, less than 1/10 the expected amount!

How can we eliminate 90 percent of the required storage?
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An interesting image:
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Image compressed 10-fold:

Kurt Bryan Picture Perfect: The Mathematics of JPEG Compression



Outline
The Need for Compression

1D Signals
2D Images

The Basis for Compression

JPEG compression (and a good chunk of applied mathematics) is
based on one of the great ideas of 19th century mathematics:

Functions can be decomposed into sums of sines and
cosines of various frequencies.
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Fourier Cosine Series

Fourier series come in many flavors. We’ll be interested in Fourier
Cosine Series: Any reasonable function f (t) defined on [0, π] can
be well-approximated as a sum of cosines,

f (t) ≈ a0

+ a1 cos(t)

+ a2 cos(2t)

+ · · ·
+ aN cos(Nt)

if we pick the ak correctly (and take N large enough).
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A Function to Approximate

f (t)
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Cosine Series Example

f (t) ≈ 4.70
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Cosine Series Example

f (t) ≈ 4.70 + 19.1 cos(t)
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Cosine Series Example

f (t) ≈ 4.70 + 19.1 cos(t) + 19.0 cos(2t)
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The Cosine Series

f (t) ≈ 5.97 + 19.1 cos(t) + 19.0 cos(2t)− 5.88 cos(3t)
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The Cosine Series

f (t) ≈ 5.97+19.1 cos(t)+19.0 cos(2t)−5.88 cos(3t)−9.92 cos(4t)
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The Cosine Series

+ · · ·+ 12.4 cos(5t) + 2.97 cos(6t)
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The Cosine Series

+ · · · − 1.70 cos(7t)− 0.53 cos(8t)
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The Cosine Coefficients

A piecewise continuously-differentiable function f (t) defined on
[0, π] can be approximated with a Fourier sum

f (t) ≈ a0
2

+ a1 cos(t) + a2 cos(2t) + · · ·+ aN cos(Nt)

where

ak =
2

π

∫ π

0
f (t) cos(kt) dt

As N →∞ the sum converges to f (t) for any t at which f is
continuous.
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Periodicity

Outside the interval [0, π] the cosine series extends f as an even
period 2π function to the real line:
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Discontinuities

Discontinuities are difficult to represent, for they take a lot of
cosine terms to synthesize accurately. Here N = 50:
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“Compressing” a Function

So a function f (t) on [0, π] is determined by its Fourier cosine
coefficients a0, a1, a2 . . ., an infinite amount of information.

We could compress this information by

Throwing out all “small” ak , e.g., |ak | < δ for some δ, and

“Quantizing” the remaining ak by, for example, rounding
them to the nearest integer, or more generally,

Rounding them to the nearest multiple of “r” for some fixed r .
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Function Compression Example

The function f (t) above has as its first 12 Fourier cosine
coefficients

9.403, 19.09, 18.97,−5.883,−9.919, 12.38, 2.967,−1.705,−0.5301

0.4059, 0.04522,−0.05778

If we round each to the nearest integer we obtain

9, 19, 19,−6,−10, 12, 3,−2,−1, 0, 0, 0

We can reconstruct f from these approximate cosine coefficients.
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Function Compression Example

The original function (black) and compressed/reconstructed
version (red)
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Sampling and Discretization

Signals and images aren’t presented as functions, but as sampled
function values:
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Sampling and Discretization

We might break [0, π] into N subintervals, sample f at each
midpoint t0, t1, . . . , tN−1:
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Sampling and Discretization

We replace f (t) with the N-vector f = (f (t0), f (t1), . . . , f (tN−1)).

Each basis function cos(kt) also gets replaced with a vector

vk =

√
2

N
(cos(kt0), cos(kt1), . . . , cos(ktN−1))

except

v0 =

√
1

N
(1, 1, . . . , 1)

(The factor in front makes the vectors have length one.)
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Symmetries and Discretization

The vectors v0, . . . , vN−1 are orthonormal, and so form a basis for
RN ! We can thus write any signal vector f as

f = c0v0 + c1v1 + · · ·+ cN−1vN−1

for certain constants ck , analogous to the cosine series

f (t) =
a0
2

+ a1 cos(t) + a2 cos(2t) + · · ·

How do we compute the ck?
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Sampling and Discretization

Dot each side of

f = c0v0 + c1v1 + · · ·+ cN−1vN−1

with vk and use vj · vk = 0 for j 6= k (while vk · vk = 1) to find

ck = f · vk .
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Sampling and Discretization

The formula
ck = f · vk

is analogous to

ak =
2

π

∫ π

0
f (t) cos(kt) dt.

In fact, the former is just the midpoint rule for evaluating the
latter integral!
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The Discrete Cosine Transform

Then any signal vector f = c0v0 + c1v1 + · · ·+ cN−1vN−1 where

ck = f · vk .

The map f → c = (c0, . . . , cN−1) is the Discrete Cosine Transform
(DCT).
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DCT Example

Consider a signal vector

f =< 36.0, 22.3, 24.2,−1.55,−40.4,−9.90, 10.3,−3.99 >

in R8:
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DCT Example

We can decompose f = c0v0 + c1v1 + · · ·+ c6v6 + c7v7,

f = 19.0 + 42.5
...

+ 11.7 + 4.7

Here c =< 19.0, 42.5, 31.7,−14.0,−14.9, 23.0, 11.7, 4.70 >.
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Matrix Formulation of the DCT

The DCT maps a vector f = (f0, . . . , fN−1) to a vector
c = (c0, . . . , cN−1) as ck = vk · f, or in matrix terms,

c = CN f

where CN is the N × N matrix with the vk as rows. The inverse
DCT is just

f = CT
Nc

since CN turns out to be orthogonal.
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Discrete Compression

To compress a discretized signal (vector) f ∈ RN :

1 Perform a DCT c = CN f.

2 Zero out all ck below a certain threshold, quantize the rest
(round to nearest integer, near tenth, etc.) This is where we
get compression.

3 The signal can be (approximately) reconstituted using the
thresholded quantized ck and an inverse DCT.
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Audio Compression Example

The file “gong1.wav” consists of 50,000 sampled audio values,
so f ∈ R50000.

With Matlab, we can perform a DCT, round each coefficient
to the nearest integer (or multiple of r). This is where
compression happens (most ck will be zero).

We can approximately reconstitute the original audio signal
with an inverse DCT.
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Blocking

1 Discontinuities cause many DCT coefficients to be
large—they don’t decay to zero very fast—and so the file is
hard to compress.

2 It can help to break the signal into blocks and compress each
individually, to limit the effect of any discontinuity to one
block.
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Compression Example 2

A signal with discontinuities, and its compressed version (eight-bit)

62 percent of the DCT coefficients remain non-zero.
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Compression Example 2

A signal with discontinuities, compressed in blocks of 50 samples:

38 percent of the DCT coefficients remain non-zero.
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Grayscale Images

1 A grayscale image on a region (x , y) ∈ [0,A]× [0,B] is
modeled by a function f (x , y), with (for example) f = 0 as
black, f = 255 as white.

2 A color image might be modeled by three functions,
R(x , y),G (x , y), and B(x , y), assigning a red, green, and blue
value to each point.

3 We’ll only be concerned with grayscale images.
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Fourier Series in 2D

A function f (x , y) defined on (x , y) ∈ [0, π]× [0, π] can be
expanded into a Fourier cosine series

f (x , y) =
a0,0

4
+

1

2

∞∑
j=1

(aj ,0 cos(jx) + a0,j cos(jy))

+
∞∑
j=1

∞∑
k=1

ajk cos(jx) cos(ky)

where

ajk =
4

π2

∫ π

0

∫ π

0
f (x , y) cos(jx) cos(ky) dx dy .
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2D Example

f (x , y) = e−((x−2)
2+(y−1)2)/5 + sin(x2y)/20, a0,0 term only:
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2D Example

All terms up to j = 2, k = 2:
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2D Example

All terms up to j = 10, k = 10:
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Sampling in 2D

A grayscale image on a square 0 ≤ x , y ≤ π can be considered as a
function f (x , y).

The sampled version is the M × N matrix q with entries

qjk = f (xk , yj),

sampled on a rectangular grid. Each sample value qjk is the gray
value of the corresponding pixel.
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The 2D DCT

Replace image function f with sampled version q, an M × N
matrix.

Replace cos(jx) cos(ky) basis function with sampled version,
M × N basis matrix Ejk , 0 ≤ j ≤ N − 1, 0 ≤ k ≤ M − 1.

We can write

q =
M∑
j=0

N∑
k=0

q̃jkEjk

for certain q̃jk , components of an M × N matrix q̃.

It turns out that
q̃ = CMqCT

N .
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The 2D DCT

As grayscale images, the matrices Ejk look like (cases
(j , k) = (0, 0), (0, 1), (3, 7), (4, 21)):

The 2D DCT expresses any image as a “sum” of these basic
images.
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2D Compression Example

A grayscale image to compress:
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2D Compression Example

The DCT, displayed as a grayscale image (log rescaling):

Kurt Bryan Picture Perfect: The Mathematics of JPEG Compression



Outline
The Need for Compression

1D Signals
2D Images

Fourier Series in 2D
Sampling and the DCT in 2D
2D Compression

2D Compression Example

The strategy:

1 Perform a DCT on the image, to produce M × N array q̃ of
DCT coefficients.

2 Quantize the array by rounding each q̃jk , zeroing out small q̃jk
(this is where compression occurs).

3 The image can be reconstructed by using the quantized array
and an inverse DCT (2D).

Kurt Bryan Picture Perfect: The Mathematics of JPEG Compression



Outline
The Need for Compression

1D Signals
2D Images

Fourier Series in 2D
Sampling and the DCT in 2D
2D Compression

2D Compression Example

The strategy:

1 Perform a DCT on the image, to produce M × N array q̃ of
DCT coefficients.

2 Quantize the array by rounding each q̃jk , zeroing out small q̃jk
(this is where compression occurs).

3 The image can be reconstructed by using the quantized array
and an inverse DCT (2D).

Kurt Bryan Picture Perfect: The Mathematics of JPEG Compression



Outline
The Need for Compression

1D Signals
2D Images

Fourier Series in 2D
Sampling and the DCT in 2D
2D Compression

2D Compression Example

The strategy:

1 Perform a DCT on the image, to produce M × N array q̃ of
DCT coefficients.

2 Quantize the array by rounding each q̃jk , zeroing out small q̃jk
(this is where compression occurs).

3 The image can be reconstructed by using the quantized array
and an inverse DCT (2D).

Kurt Bryan Picture Perfect: The Mathematics of JPEG Compression



Outline
The Need for Compression

1D Signals
2D Images

Fourier Series in 2D
Sampling and the DCT in 2D
2D Compression

2D Compression Example

Round DCT coefficients to near multiple of 100 (yields 90 percent
compression):
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Block Compression

As in 1D, discontinuities (edges) cause trouble. It can help to
divide the image into blocks and compress each individually.

The JPEG standard uses 8× 8 pixel blocks.
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2D JPEG Example

The satellite image compressed in 8× 8 blocks, 90 percent DCT
coefficients zeroed out:
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Final Remarks

The ideas of Fourier analysis appears in many other areas of
image processing, e.g., noise removal, edge detection.

The new JPEG 2000 standard replaces the cosine basis
functions with “wavelet” basis functions.
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