Picture Perfect: The Mathematics of JPEG Compression

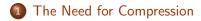
Kurt Bryan

May 19, 2011

Kurt Bryan Picture Perfect: The Mathematics of JPEG Compression

- 4 同 2 4 日 2 4 日 2

э



2 1D Signals

- Fourier Series
- The Discrete Cosine Transform
- Compression Strategy

3 2D Images

- Fourier Series in 2D
- Sampling and the DCT in 2D
- 2D Compression

A 10

	Outline The Need for Compression 1D Signals 2D Images	
Images		

• A typical color image might be 600 by 800 pixels.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Images

- A typical color image might be 600 by 800 pixels.
- Each pixel has a red (R), green (G) and blue (B) value associated to it.

(4 同) 4 ヨ) 4 ヨ)

3

Images

- A typical color image might be 600 by 800 pixels.
- Each pixel has a red (R), green (G) and blue (B) value associated to it.
- Each pixel needs 3 bytes of storage (one for each color).

(4月) (4日) (4日)

-

Images

- A typical color image might be 600 by 800 pixels.
- Each pixel has a red (R), green (G) and blue (B) value associated to it.
- Each pixel needs 3 bytes of storage (one for each color).
- That's $600 \times 800 \times 3 = 1.44$ megabytes.

(4月) (4日) (4日)

-

Images

- A typical color image might be 600 by 800 pixels.
- Each pixel has a red (R), green (G) and blue (B) value associated to it.
- Each pixel needs 3 bytes of storage (one for each color).
- That's $600 \times 800 \times 3 = 1.44$ megabytes.
- But a typical 600 by 800 JPEG image takes only about 120 kilobytes, less than 1/10 the expected amount!

(4 同) 4 ヨ) 4 ヨ)

Images

- A typical color image might be 600 by 800 pixels.
- Each pixel has a red (R), green (G) and blue (B) value associated to it.
- Each pixel needs 3 bytes of storage (one for each color).
- That's $600 \times 800 \times 3 = 1.44$ megabytes.
- But a typical 600 by 800 JPEG image takes only about 120 kilobytes, less than 1/10 the expected amount!

How can we eliminate 90 percent of the required storage?

(4 同) 4 ヨ) 4 ヨ)

Compression

An interesting image:

Bad Compression

Image compressed 10-fold:

The Basis for Compression

JPEG compression (and a good chunk of applied mathematics) is based on one of the great ideas of 19th century mathematics:

Functions can be decomposed into sums of sines and cosines of various frequencies.

Fourier Series The Discrete Cosine Transform Compression Strategy

Fourier Cosine Series

Fourier series come in many flavors. We'll be interested in *Fourier* Cosine Series: Any reasonable function f(t) defined on $[0, \pi]$ can be well-approximated as a sum of cosines,

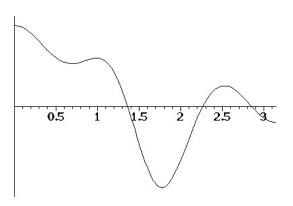
$$f(t) \approx a_0 + a_1 \cos(t) + a_2 \cos(2t) + \cdots + a_N \cos(Nt)$$

if we pick the a_k correctly (and take N large enough).

・吊り ・ラト ・ラト

Fourier Series The Discrete Cosine Transform Compression Strategy

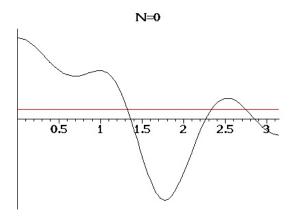
A Function to Approximate



Fourier Series The Discrete Cosine Transform Compression Strategy

Cosine Series Example

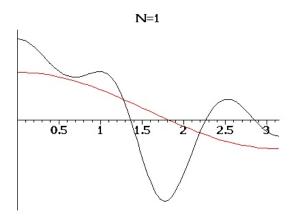
 $f(t) \approx 4.70$



Fourier Series The Discrete Cosine Transform Compression Strategy

Cosine Series Example

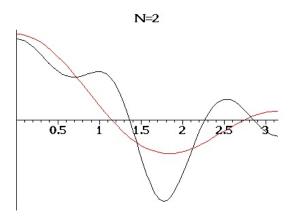
$f(t)\approx 4.70+19.1\cos(t)$



Fourier Series The Discrete Cosine Transform Compression Strategy

Cosine Series Example

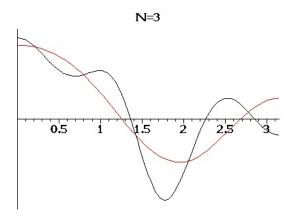
 $f(t) \approx 4.70 + 19.1\cos(t) + 19.0\cos(2t)$



Fourier Series The Discrete Cosine Transform Compression Strategy

The Cosine Series

 $f(t) \approx 5.97 + 19.1\cos(t) + 19.0\cos(2t) - 5.88\cos(3t)$

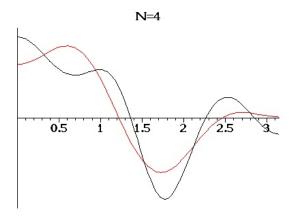


ъ

Fourier Series The Discrete Cosine Transform Compression Strategy

The Cosine Series

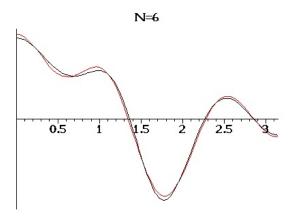
 $f(t) \approx 5.97 + 19.1 \cos(t) + 19.0 \cos(2t) - 5.88 \cos(3t) - 9.92 \cos(4t)$



Fourier Series The Discrete Cosine Transform Compression Strategy

The Cosine Series

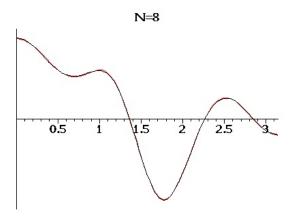
 $+\cdots + 12.4\cos(5t) + 2.97\cos(6t)$



Fourier Series The Discrete Cosine Transform Compression Strategy

The Cosine Series

$$+\cdots - 1.70\cos(7t) - 0.53\cos(8t)$$



문 🛌 문

Fourier Series The Discrete Cosine Transform Compression Strategy

The Cosine Coefficients

A piecewise continuously-differentiable function f(t) defined on $[0, \pi]$ can be approximated with a Fourier sum

$$f(t)\approx \frac{a_0}{2}+a_1\cos(t)+a_2\cos(2t)+\cdots+a_N\cos(Nt)$$

where

$$a_k = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(kt) dt$$

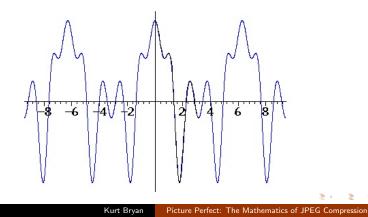
As $N \to \infty$ the sum converges to f(t) for any t at which f is continuous.

イロト イポト イヨト イヨト

Fourier Series The Discrete Cosine Transform Compression Strategy

Periodicity

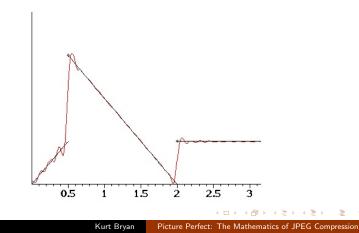
Outside the interval $[0, \pi]$ the cosine series extends f as an even period 2π function to the real line:



Fourier Series The Discrete Cosine Transform Compression Strategy

Discontinuities

Discontinuities are difficult to represent, for they take a lot of cosine terms to synthesize accurately. Here N = 50:



Fourier Series The Discrete Cosine Transform Compression Strategy

"Compressing" a Function

So a function f(t) on $[0, \pi]$ is determined by its Fourier cosine coefficients $a_0, a_1, a_2 \dots$, an infinite amount of information.

We could compress this information by

- 4 同 1 - 4 回 1 - 4 回 1

Fourier Series The Discrete Cosine Transform Compression Strategy

"Compressing" a Function

So a function f(t) on $[0, \pi]$ is determined by its Fourier cosine coefficients $a_0, a_1, a_2 \dots$, an infinite amount of information.

We could compress this information by

• Throwing out all "small" a_k , e.g., $|a_k| < \delta$ for some δ , and

・ 同 ト ・ ヨ ト ・ ヨ ト

Fourier Series The Discrete Cosine Transform Compression Strategy

"Compressing" a Function

So a function f(t) on $[0, \pi]$ is determined by its Fourier cosine coefficients $a_0, a_1, a_2 \dots$, an infinite amount of information.

We could compress this information by

- Throwing out all "small" a_k , e.g., $|a_k| < \delta$ for some δ , and
- "Quantizing" the remaining *a_k* by, for example, rounding them to the nearest integer, or more generally,

(4月) イヨト イヨト

Fourier Series The Discrete Cosine Transform Compression Strategy

"Compressing" a Function

So a function f(t) on $[0, \pi]$ is determined by its Fourier cosine coefficients $a_0, a_1, a_2 \dots$, an infinite amount of information.

We could compress this information by

- Throwing out all "small" a_k , e.g., $|a_k| < \delta$ for some δ , and
- "Quantizing" the remaining *a_k* by, for example, rounding them to the nearest integer, or more generally,
- Rounding them to the nearest multiple of "r" for some fixed r.

イロト イポト イヨト イヨト

Fourier Series The Discrete Cosine Transform Compression Strategy

Function Compression Example

The function f(t) above has as its first 12 Fourier cosine coefficients

 $\begin{array}{l}9.403, 19.09, 18.97, -5.883, -9.919, 12.38, 2.967, -1.705, -0.5301\\0.4059, 0.04522, -0.05778\end{array}$

(4月) (4日) (4日)

Fourier Series The Discrete Cosine Transform Compression Strategy

Function Compression Example

The function f(t) above has as its first 12 Fourier cosine coefficients

 $\begin{array}{l}9.403, 19.09, 18.97, -5.883, -9.919, 12.38, 2.967, -1.705, -0.5301\\0.4059, 0.04522, -0.05778\end{array}$

If we round each to the nearest integer we obtain

$$9, 19, 19, -6, -10, 12, 3, -2, -1, 0, 0, 0$$

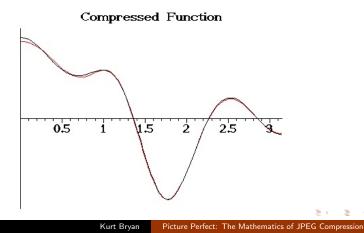
We can reconstruct f from these approximate cosine coefficients.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fourier Series The Discrete Cosine Transform Compression Strategy

Function Compression Example

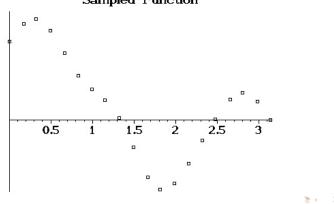
The original function (black) and compressed/reconstructed version (red)



The Discrete Cosine Transform

Sampling and Discretization

Signals and images aren't presented as functions, but as sampled function values:



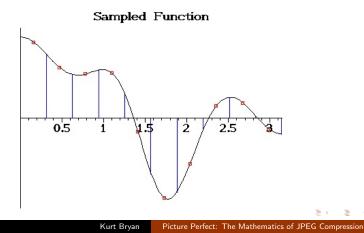
Sampled Function

Kurt Bryan Picture Perfect: The Mathematics of JPEG Compression

Fourier Series **The Discrete Cosine Transform** Compression Strategy

Sampling and Discretization

We might break $[0, \pi]$ into N subintervals, sample f at each midpoint $t_0, t_1, \ldots, t_{N-1}$:



Fourier Series **The Discrete Cosine Transform** Compression Strategy

Sampling and Discretization

We replace f(t) with the N-vector $\mathbf{f} = (f(t_0), f(t_1), \dots, f(t_{N-1}))$.

Each basis function cos(kt) also gets replaced with a vector

$$\mathbf{v}_k = \sqrt{\frac{2}{N}}(\cos(kt_0),\cos(kt_1),\ldots,\cos(kt_{N-1}))$$

except

$$\mathbf{v}_0 = \sqrt{\frac{1}{N}}(1, 1, \dots, 1)$$

(The factor in front makes the vectors have length one.)

(4 同) 4 ヨ) 4 ヨ)

Fourier Series **The Discrete Cosine Transform** Compression Strategy

Symmetries and Discretization

The vectors $\mathbf{v}_0, \ldots, \mathbf{v}_{N-1}$ are orthonormal, and so form a basis for \mathbb{R}^N ! We can thus write any signal vector \mathbf{f} as

$$\mathbf{f} = c_0 \mathbf{v}_0 + c_1 \mathbf{v}_1 + \dots + c_{N-1} \mathbf{v}_{N-1}$$

for certain constants c_k , analogous to the cosine series

$$f(t) = \frac{a_0}{2} + a_1 \cos(t) + a_2 \cos(2t) + \cdots$$

How do we compute the c_k ?

伺 ト イヨト イヨト

Fourier Series The Discrete Cosine Transform Compression Strategy

Sampling and Discretization

Dot each side of

$$\mathbf{f} = c_0 \mathbf{v}_0 + c_1 \mathbf{v}_1 + \dots + c_{N-1} \mathbf{v}_{N-1}$$

with \mathbf{v}_k and use $\mathbf{v}_j \cdot \mathbf{v}_k = 0$ for $j \neq k$ (while $\mathbf{v}_k \cdot \mathbf{v}_k = 1$) to find

 $c_k = \mathbf{f} \cdot \mathbf{v}_k.$

- 4 同 2 4 日 2 4 日 2

-

Fourier Series **The Discrete Cosine Transform** Compression Strategy

Sampling and Discretization

The formula

$$c_k = \mathbf{f} \cdot \mathbf{v}_k$$

is analogous to

$$a_k = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(kt) \, dt.$$

In fact, the former is just the midpoint rule for evaluating the latter integral!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Fourier Series The Discrete Cosine Transform Compression Strategy

The Discrete Cosine Transform

Then any signal vector $\mathbf{f} = c_0 \mathbf{v}_0 + c_1 \mathbf{v}_1 + \cdots + c_{N-1} \mathbf{v}_{N-1}$ where

 $c_k = \mathbf{f} \cdot \mathbf{v}_k.$

The map $\mathbf{f} \rightarrow \mathbf{c} = (c_0, \dots, c_{N-1})$ is the Discrete Cosine Transform (DCT).

イロト イポト イヨト イヨト

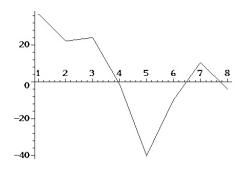
-

Fourier Series The Discrete Cosine Transform Compression Strategy

DCT Example

Consider a signal vector

 $\mathbf{f} = < 36.0, 22.3, 24.2, -1.55, -40.4, -9.90, 10.3, -3.99 >$ in \mathbb{R}^8 :



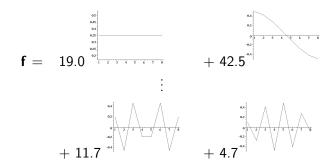
・ 同 ト ・ 三 ト ・

3 x 3

Outline The Need for Compression 1D Signals 2D Images Fourier Series The Discrete Cosine Transform Compression Strategy

DCT Example

We can decompose $\mathbf{f} = c_0 \mathbf{v}_0 + c_1 \mathbf{v}_1 + \cdots + c_6 \mathbf{v}_6 + c_7 \mathbf{v}_7$,



Here c = < 19.0, 42.5, 31.7, -14.0, -14.9, 23.0, 11.7, 4.70 >.

Fourier Series **The Discrete Cosine Transform** Compression Strategy

Matrix Formulation of the DCT

The DCT maps a vector $\mathbf{f} = (f_0, \dots, f_{N-1})$ to a vector $\mathbf{c} = (c_0, \dots, c_{N-1})$ as $c_k = \mathbf{v}_k \cdot \mathbf{f}$, or in matrix terms,

$$\mathbf{c} = \mathbf{C}_N \mathbf{f}$$

where \mathbf{C}_N is the $N \times N$ matrix with the \mathbf{v}_k as rows. The inverse DCT is just

$$\mathbf{f} = \mathbf{C}_N^T \mathbf{c}$$

since C_N turns out to be orthogonal.

・吊り ・ラト ・ラト

Fourier Series The Discrete Cosine Transform Compression Strategy

Discrete Compression

To compress a discretized signal (vector) $\mathbf{f} \in \mathbb{R}^N$:

- 4 同 2 4 日 2 4 日 2

Fourier Series The Discrete Cosine Transform Compression Strategy

Discrete Compression

To compress a discretized signal (vector) $\mathbf{f} \in \mathbb{R}^N$:

• Perform a DCT $\mathbf{c} = \mathbf{C}_N \mathbf{f}$.

- 4 同 2 4 日 2 4 日 2

Fourier Series The Discrete Cosine Transform Compression Strategy

Discrete Compression

To compress a discretized signal (vector) $\mathbf{f} \in \mathbb{R}^N$:

- Perform a DCT $\mathbf{c} = \mathbf{C}_N \mathbf{f}$.
- Zero out all c_k below a certain threshold, quantize the rest (round to nearest integer, near tenth, etc.) This is where we get compression.

(4 同) (1 日) (1 日)

Fourier Series The Discrete Cosine Transform Compression Strategy

Discrete Compression

To compress a discretized signal (vector) $\mathbf{f} \in \mathbb{R}^N$:

• Perform a DCT
$$\mathbf{c} = \mathbf{C}_N \mathbf{f}$$
.

- Zero out all c_k below a certain threshold, quantize the rest (round to nearest integer, near tenth, etc.) This is where we get compression.
- The signal can be (approximately) reconstituted using the thresholded quantized c_k and an inverse DCT.

・吊り ・ラト ・ラト

Fourier Series The Discrete Cosine Transform Compression Strategy

Audio Compression Example

• The file "gong1.wav" consists of 50,000 sampled audio values, so $\mathbf{f} \in \mathbb{R}^{50000}.$

- 4 同 2 4 日 2 4 日 2

Fourier Series The Discrete Cosine Transform Compression Strategy

Audio Compression Example

- The file "gong1.wav" consists of 50,000 sampled audio values, so $\mathbf{f} \in \mathbb{R}^{50000}.$
- With Matlab, we can perform a DCT, round each coefficient to the nearest integer (or multiple of r). This is where compression happens (most c_k will be zero).

(4 同) (1 日) (1 日)

Fourier Series The Discrete Cosine Transform Compression Strategy

Audio Compression Example

- The file "gong1.wav" consists of 50,000 sampled audio values, so $\mathbf{f} \in \mathbb{R}^{50000}.$
- With Matlab, we can perform a DCT, round each coefficient to the nearest integer (or multiple of r). This is where compression happens (most c_k will be zero).
- We can approximately reconstitute the original audio signal with an inverse DCT.

(4 同) 4 回) 4 回)

Fourier Series The Discrete Cosine Transform Compression Strategy

Blocking

 Discontinuities cause many DCT coefficients to be large—they don't decay to zero very fast—and so the file is hard to compress.

Fourier Series The Discrete Cosine Transform Compression Strategy

Blocking

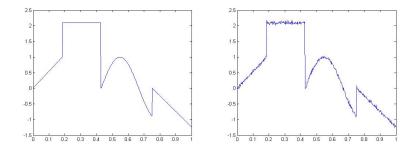
- Discontinuities cause many DCT coefficients to be large—they don't decay to zero very fast—and so the file is hard to compress.
- It can help to break the signal into blocks and compress each individually, to limit the effect of any discontinuity to one block.

(4 同) 4 回) 4 回)

Fourier Series The Discrete Cosine Transform Compression Strategy

Compression Example 2

A signal with discontinuities, and its compressed version (eight-bit)



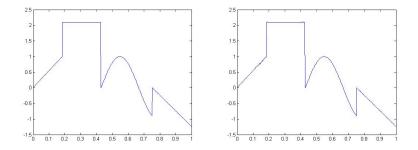
62 percent of the DCT coefficients remain non-zero.

-∰ ► < ≣ ►

Fourier Series The Discrete Cosine Transform Compression Strategy

Compression Example 2

A signal with discontinuities, compressed in blocks of 50 samples:



38 percent of the DCT coefficients remain non-zero.

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

Grayscale Images

 A grayscale image on a region (x, y) ∈ [0, A] × [0, B] is modeled by a function f(x, y), with (for example) f = 0 as black, f = 255 as white.

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

Grayscale Images

- A grayscale image on a region (x, y) ∈ [0, A] × [0, B] is modeled by a function f(x, y), with (for example) f = 0 as black, f = 255 as white.
- A color image might be modeled by three functions, *R*(x, y), *G*(x, y), and *B*(x, y), assigning a red, green, and blue value to each point.

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

Grayscale Images

- A grayscale image on a region (x, y) ∈ [0, A] × [0, B] is modeled by a function f(x, y), with (for example) f = 0 as black, f = 255 as white.
- A color image might be modeled by three functions, *R*(x, y), *G*(x, y), and *B*(x, y), assigning a red, green, and blue value to each point.
- **③** We'll only be concerned with grayscale images.

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

Fourier Series in 2D

A function f(x, y) defined on $(x, y) \in [0, \pi] \times [0, \pi]$ can be expanded into a Fourier cosine series

$$f(x,y) = \frac{a_{0,0}}{4} + \frac{1}{2} \sum_{j=1}^{\infty} (a_{j,0} \cos(jx) + a_{0,j} \cos(jy)) \\ + \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} \cos(jx) \cos(ky)$$

where

$$a_{jk} = \frac{4}{\pi^2} \int_0^{\pi} \int_0^{\pi} f(x, y) \cos(jx) \cos(ky) \, dx \, dy.$$

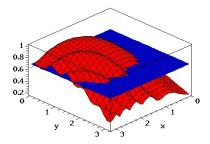
イロト イポト イヨト イヨト

3

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

2D Example

$f(x, y) = e^{-((x-2)^2 + (y-1)^2)/5} + \sin(x^2y)/20$, $a_{0,0}$ term only:



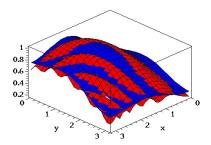
イロト イポト イヨト イヨト

э

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

2D Example

All terms up to j = 2, k = 2:



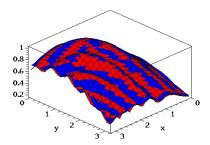
イロト イ団ト イヨト イヨト

э

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

2D Example

All terms up to j = 10, k = 10:



э

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

Sampling in 2D

A grayscale image on a square $0 \le x, y \le \pi$ can be considered as a function f(x, y).

The sampled version is the $M \times N$ matrix **q** with entries

$$q_{jk}=f(x_k,y_j),$$

sampled on a rectangular grid. Each sample value q_{jk} is the gray value of the corresponding pixel.

- 4 同 2 4 日 2 4 日 2

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

The 2D DCT

Kurt Bryan Picture Perfect: The Mathematics of JPEG Compression

イロン イロン イヨン イヨン

æ

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

The 2D DCT

• Replace image function f with sampled version \mathbf{q} , an $M \times N$ matrix.

(a)

3

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

The 2D DCT

- Replace image function f with sampled version \mathbf{q} , an $M \times N$ matrix.
- Replace $\cos(jx) \cos(ky)$ basis function with sampled version, $M \times N$ basis matrix \mathbf{E}_{jk} , $0 \le j \le N - 1, 0 \le k \le M - 1$.

イロト イポト イヨト イヨト

-

 Outline
 Fourier Series in 2D

 The Need for Compression
 Sampling and the DCT in 2D

 1D Signals
 2D Images

The 2D DCT

- Replace image function f with sampled version \mathbf{q} , an $M \times N$ matrix.
- Replace $\cos(jx) \cos(ky)$ basis function with sampled version, $M \times N$ basis matrix \mathbf{E}_{jk} , $0 \le j \le N - 1, 0 \le k \le M - 1$.
- We can write

$$\mathbf{q} = \sum_{j=0}^{M} \sum_{k=0}^{N} \tilde{q}_{jk} \mathbf{E}_{jk}$$

for certain \tilde{q}_{ik} , components of an $M \times N$ matrix $\tilde{\mathbf{q}}$.

 Outline
 Fourier Series in 2D

 The Need for Compression
 Sampling and the DCT in 2D

 1D Signals
 2D Images

The 2D DCT

- Replace image function f with sampled version \mathbf{q} , an $M \times N$ matrix.
- Replace $\cos(jx) \cos(ky)$ basis function with sampled version, $M \times N$ basis matrix \mathbf{E}_{jk} , $0 \le j \le N - 1, 0 \le k \le M - 1$.
- We can write

$$\mathbf{q} = \sum_{j=0}^{M} \sum_{k=0}^{N} \tilde{q}_{jk} \mathbf{E}_{jk}$$

for certain \tilde{q}_{jk} , components of an $M \times N$ matrix $\tilde{\mathbf{q}}$.

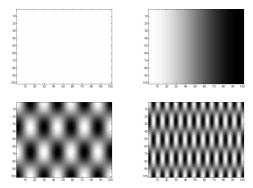
It turns out that

$$\tilde{\mathbf{q}} = \mathbf{C}_M \mathbf{q} \mathbf{C}_N^T.$$

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

The 2D DCT

As grayscale images, the matrices E_{jk} look like (cases (j, k) = (0, 0), (0, 1), (3, 7), (4, 21)):

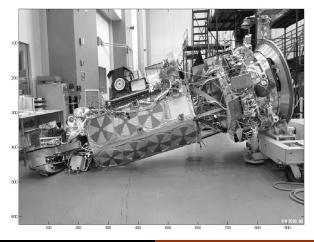


Kurt Bryan Picture Perfect: The Mathematics of JPEG Compression

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

2D Compression Example

A grayscale image to compress:



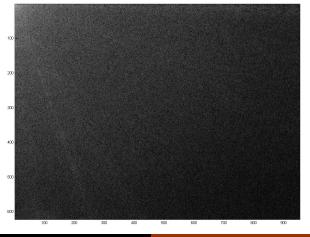
Kurt Bryan

Picture Perfect: The Mathematics of JPEG Compression

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

2D Compression Example

The DCT, displayed as a grayscale image (log rescaling):



Kurt Bryan Picture Perfect: The Mathematics of JPEG Compression

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

2D Compression Example

The strategy:

Perform a DCT on the image, to produce M × N array q of DCT coefficients.

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

2D Compression Example

The strategy:

- Perform a DCT on the image, to produce M × N array q of DCT coefficients.
- **Quantize the array by rounding each** \tilde{q}_{jk} , zeroing out small \tilde{q}_{jk} (this is where compression occurs).

- 4 同 2 4 日 2 4 日 2

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

2D Compression Example

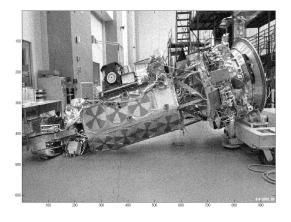
The strategy:

- Perform a DCT on the image, to produce M × N array q of DCT coefficients.
- **Quantize the array by rounding each** \tilde{q}_{jk} , zeroing out small \tilde{q}_{jk} (this is where compression occurs).
- The image can be reconstructed by using the quantized array and an inverse DCT (2D).

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

2D Compression Example

Round DCT coefficients to near multiple of 100 (yields 90 percent compression):



Kurt Bryan Picture Perfect: The Mathematics of JPEG Compression

Block Compression

• As in 1D, discontinuities (edges) cause trouble. It can help to divide the image into blocks and compress each individually.

(4 同) (1 日) (1 日)

Block Compression

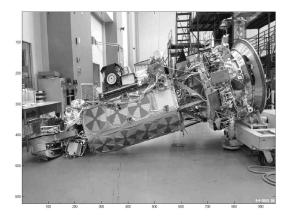
- As in 1D, discontinuities (edges) cause trouble. It can help to divide the image into blocks and compress each individually.
- The JPEG standard uses 8×8 pixel blocks.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

2D JPEG Example

The satellite image compressed in 8 \times 8 blocks, 90 percent DCT coefficients zeroed out:



Kurt Bryan Picture Perfect: The Mathematics of JPEG Compression

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

Final Remarks

• The ideas of Fourier analysis appears in many other areas of image processing, e.g., noise removal, edge detection.

Fourier Series in 2D Sampling and the DCT in 2D 2D Compression

Final Remarks

- The ideas of Fourier analysis appears in many other areas of image processing, e.g., noise removal, edge detection.
- The new JPEG 2000 standard replaces the cosine basis functions with "wavelet" basis functions.