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Abstract. This paper provides an elementary derivation of a very simple
“closed-form” inversion formula for the Laplace Transform.
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1 Introduction

The Laplace transform is a powerful tool in applied mathematics and en-
gineering. Virtually every beginning course in differential equations at the
undergraduate level introduces this technique for solving linear differential
equations. The Laplace transform is indispensable in certain areas of control
theory. Given a function f(t) defined for 0 ≤ t < ∞, the Laplace transform
F (s) is defined as

F (s) =
∫ ∞

0
e−stf(t) dt, (1)

at least for those s for which the integral converges. In practice when one uses
the Laplace transform to, for example, solve a differential equation, one has to
at some point invert the Laplace transform by finding the function f(t) which
corresponds to some specified F (s). The usual technique is to manipulate F (s)
algebraically (e.g., with partial fraction decompositions, shifting theorems,
etc.) until one can “guess” a function f(t) to which F (s) corresponds. But
two questions arise very naturally:

1. Could two different functions f1(t) and f2(t) have the same Laplace trans-
form?

2. Is there a constructive or explicit procedure for determining f(t) from
F (s)?
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Under reasonable restrictions on the functions involved, the answer to both
questions is “yes”, but the standard techniques used to show this—complex
analysis, residue computations, and/or Fourier’s integral inversion theorem—
are generally outside the scope of an introductory differential equations course.

The purpose of this paper is to show that one can answer both questions
above—and give an “explicit” (albeit not necessarily practical) inversion pro-
cedure for the Laplace transform—using only very elementary analysis. The
main result, Theorem 2.1, was actually proved by E. Post in 1930 [2]. The au-
thor of this note “rediscovered” the result while trying to prove results on the
non-negativity of a function f(t) from knowledge of its Laplace transform (see
Theorem 2.3 below.) The inversion formula does not seem to be well-known,
and does not appear in most standard texts on the Laplace Transform.

The actual proof of the inversion formula uses only elementary properties of
the Laplace transform as taught in most differential equations courses. Indeed,
if one is willing to accept the “graphically” obvious fact stated in Lemma 3.1
below, then the proof of the inversion formula becomes an easy one page
exercise.

2 Inverting the Laplace Transform

Let f(t) be a continuous function on the interval [0,∞) which is of exponential
order, that is, for some b ∈ lR

sup
t>0

|f(t)|
ebt

< ∞. (2)

In this case the Laplace transform (1) exists for all s > b and is in fact infinitely
differentiable with respect to s for s > b; see [1], section 19. The following
theorem shows that f(t) can be uniquely recovered from F (s).

Theorem 2.1 (Post’s Inversion Formula) A function f which is continuous
on [0,∞) and satisfies the growth condition (2) can be recovered from F (s) as

f(t) = lim
k→∞

(−1)k

k!

(
k

t

)k+1

F (k)

(
k

t

)

for t > 0, where F (k) denotes the kth derivative of F .

Since Theorem 2.1 yields f(t) in terms of F (s), we immediately obtain

Theorem 2.2 Let f(t) and g(t) be continuous functions defined for t ≥ 0
which satisfy (2), with Laplace transforms F (s) and G(s), respectively. If for
some constant c > 0 we have F (s) = G(s) for all s > c then f(t) = g(t) for
all t > 0.
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Of course, the main difficulty in using Theorem 2.1 for actually computing
the inverse Laplace transform is that repeated symbolic differentiation of F
may yield rather unwieldy expressions. However, one can apply the theorem
in a few simple cases.

Example 1: Let f(t) = e−at. The Laplace transform is easily found to
be F (s) = 1

s+a
. It is also simple to verify that F (k)(s) = k!(−1)k(s + a)−k−1.

Inserting this expression for F (k) into Theorem 2.1 gives

f(t) = lim
k→∞

kk+1

tk+1

(
a +

k

t

)−k−1

= lim
k→∞

(
1 +

at

k

)−k−1

.

This last limit is easy to evaluate—take the natural log of both sides and write
the resulting indeterminate form as − ln(1+at/k)

1/(k+1)
. L’Hopital’s rule reveals that

the indeterminate form approaches −at. The continuity of the natural loga-
rithm immediately shows that ln(f(t)) = −at, so f(t) = e−at.

Example 2: Let f(t) = tn, with n ≥ 0. In this case we have F (s) = n!s−1−n.
One finds that

F (k)(s) = (−1)k(n + k)!s−n−k−1.

Inserting this into Theorem 2.1 yields

f(t) = tn lim
k→∞

kk+1(n + k)!

k!tk+1

(
k

t

)−n−k−1

.

One can use Stirling’s formula in the form limk→∞ k!√
2πk

kke−k = 1 to obtain,
after a bit of simplification,

f(t) = tne−n lim
k→∞

√
1 +

n

k

(
1 +

n

k

)k (
1 +

n

k

)n

.

As k →∞ one finds that
√

1 + n
k
→ 1, (1 + n

k
)k → en, and

(
1 + n

k

)n → 1. As

a result the limit yields f(t) = tn.

Example 3: One can use the inversion formula to approximately invert the
Laplace transform for more complicated functions. For example, let

f(t) = tH(1− t) + H(t− 1)− 1

2
H(t− 2)

where H(t) is the Heaviside function (H(t) = 0 for t < 0, H(t) = 1 for
t ≥ 0.) We can compute the Laplace transform F (s) of f to find F (s) =
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(1−e−s)/s2−e−2s/(2s). Now apply the inversion formula but replace the limit
in k with a finite but reasonably large value of k—say k = 50. We have to
differentiate F (s) symbolically k times, but a computer algebra system such as
Maple or Mathematica makes this tractable. A plot of the successively better
reconstructions for k = 5, 20, and 50 are shown below:
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Figure 1: Reconstruction of f(t) for k = 5, 20, 50.

Example 4: Identifying Non-negative Functions

Suppose f(t) is a non-negative function which satisfies the bound (2). Then
the integrand in the definition of the Laplace transform (1) is non-negative and
as a result F (s) ≥ 0 for all s > b. Differentiating (1) repeatedly with respect
to s yields

F (k)(s) = (−1)k
∫ ∞

0
tke−stf(t) dt.

Again, non-negativity of the integrand shows that F (k)(s) alternates sign with
respect to k. Thus if f(t) is non-negative then we have (−1)kF (k)(s) ≥ 0 for
all k and s > b.

From Theorem 2.1, however, we see that the converse is also true! If
(−1)kF (k)(s) ≥ 0 holds for each k then the quantity under the limit on the
right side of the expression displayed in Theorem 2.1 is non-negative. As a
result, the limit f(t) is necessarily non-negative and we have

Theorem 2.3 A function f satisfying the bound (2) with Laplace transform
F (s) is non-negative if and only if

(−1)kF (k)(s) ≥ 0

for all k ≥ 0 and all s > b.
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3 Proof of the Inversion Formula

In preparation for the proof of Theorem 2.1, let us define the sequence of
functions gk(t) for t ≥ 0 and k ∈ Z+ as

gk(t) =
kk+1

k!
tke−kt. (3)

It is an easy exercise in integration by parts to verify that

∫ ∞

0
gk(t) dt = 1 (4)

for all k > 0. Also, gk has a unique maximum at t = 1, with gk(1) = kk+1e−k

k!
.

Finally, we note that since k! > kke−k for all positive integers k (this is easy
to prove; see [4], chapter 5, exercises 13 and 14) we have the inequality

gk(t) ≤ ktkek(1−t) (5)

for all t ≥ 0 and positive k.
Below we plot gk(t) for several values of k.
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Figure 2: Function gk(t) for k = 1, 2, 5, 20.

It is apparent that as k increases, gk(t) has a sharper peak and is “localized”
near t = 1. Put another way, gk(t) approximates the delta function δ(t − 1).
The following lemma quantifies this statement.

Lemma 3.1 For any continuous function φ(t) defined for t ≥ 0 which satisfies
the bound (2) we have

lim
k→∞

∫ ∞

0
gk(t)φ(t) dt = φ(1).
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We defer the proof of Lemma 3.1 to section 4. With Lemma 3.1 in hand,
however, it is relatively easy to prove Theorem 2.1.

Proof of Theorem 2.1: Given a function φ(t), let us denote its Laplace
transform as a function of s by L[φ](s) and set F (s) = L[f ](s). We recall
some elementary properties of the Laplace Transform (see [1] for proofs):

1.
dkF (s)

dsk
= L[(−1)ktkf(t)](s)

2. F (s + c) = L[e−ctf(t)](s)

3.
1

c
F (s/c) = L[f(ct)](s)

For t0 > 0 define the function f̃(t) = f(t0t) and note that by property (3)
above we have

L[f̃ ](s) = L[f(t0t)](s) =
1

t0
F (s/t0).

It immediately follows that for all sufficiently large s

dk

dsk

(
L[f̃ ]

)
(s) =

1

tk+1
0

F (k)(s/t0). (6)

Let φ(t) = e−stf̃(t). If f satisfies the growth condition (2) then so does φ (with
b replaced by b− s.) From Lemma 3.1 and the definition of gk(t) we have

φ(1) = e−sf̃(1) = e−sf(t0) = lim
k→∞

kk+1

k!

∫ ∞

0
e−sttke−ktf̃(t) dt

= lim
k→∞

kk+1

k!
L[tke−ktf̃(t)](s). (7)

Using the above properties (1) and (2) of the Laplace Transform, equation (6),
and the definition of f̃ we have

L[tke−ktf̃(t)](s) = (−1)k dk

dsk
(L[e−ktf̃(t)])(s)

= (−1)k dk

dsk
(L[f̃ ])(s + k)

= (−1)k 1

tk+1
0

dk

dsk
(L[f ])

(
s + k

t0

)

= (−1)k 1

tk+1
0

F (k)

(
s + k

t0

)
. (8)
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Equations (7) and (8), with f(t0) = esφ(1), now yield

f(t0) = es lim
k→∞

(−1)k

k!

(
k

t0

)k+1

F (k)

(
s + k

t0

)
(9)

for any s. The statement in Theorem 2.1 is actually just the special case s = 0.

4 The Proof of Lemma 3.1

We first establish the following technical lemma.

Lemma 4.1 For any δ with 0 < δ < 1 and any real b we have

lim
k→∞

∫ 1−δ

0
gk(t)e

bt dt = 0, (10)

lim
k→∞

∫ ∞

1+δ
gk(t)e

bt dt = 0. (11)

Proof: To prove (10), first define the function

h(t) = te1−t.

The function h(t) is positive for t > 0, has a maximum value of 1 at t = 1, and
h(t) < 1 for all t 6= 1. Also, it is easy to check that h′(t) > 0 for all t ∈ (0, 1),
so h is strictly increasing on (0, 1). It follows that

h(t) ≤ h(1− δ) < 1

for all t with 0 ≤ t ≤ 1 − δ. Note that by inequality (5) we have gk(t) ≤
k(h(t))k. Let m = max(1, eb(1+δ)). It follows that

0 <
∫ 1−δ

0
gk(t)e

bt dt ≤ k
∫ 1−δ

0
(h(t))kebt dt

< mk
∫ 1−δ

0
(h(1− δ))k dt

= mk(1− δ)(h(1− δ))k. (12)

Since 0 < h(1−δ) < 1, it is clear that the term on the right in (12) approaches
zero as k →∞, and so equation (10) must hold.

To prove equation (11), again let h(t) = te1−t. For any a with 0 < a < 1
and all t > 1

1−a
we have the inequality

h(t) <
1

1− a
e−at. (13)
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This can easily be shown by examining the function h(t)
e−at . This function has a

unique maximum for t in (1,∞) at t = 1
1−a

, with maximum value 1
1−a

, which
immediately implies the inequality (13).

From gk(t) ≤ k(h(t))k and inequality (13) we obtain

gk(t)e
bt < k

(
1

1− a

)k

e(b−ka)t (14)

for all t > 1
1−a

. Let a0 = δ
1+δ

. Choosing a < a0 gives 0 < a < 1 and, by simple

algebra, 1
1−a

< 1 + δ. By inequality (14)

∫ ∞

1+δ
gk(t)e

bt dt < k
(

1

1− a

)k ∫ ∞

1+δ
e(b−ka)t dt

= k
(

1

1− a

)k
(

e(b−ka)(1+δ)

ka− b

)

=
eb(1+δ)

a

(
e−a(1+δ)

1− a

)k

. (15)

provided of course that k is large enough so that the integrals converge.

Claim: For any δ > 0 we have, for all sufficiently small positive a, that

e−a(1+δ)

1− a
< 1.

Proof: By simple algebra the inequality above is equivalent to

1 + δ >
− ln(1− a)

a
. (16)

It’s easy to check that the function φ(a) = − ln(1−a)
a

satisfies lima→0 φ(a) = 1,
φ′(a) > 0 for 0 < a < 1, and lima→1 φ(a) = ∞. It follows that for δ > 0 the
equation

φ(a) = 1 + δ

has a unique solution a = a1. If a is chosen so that a < a1 then inequality (16)
will hold, and this proves the claim.

To finish the proof of Lemma 4.1 we choose a < min(a0, a1), and let d =
e−a(1+δ)

1−a
< 1. Inequality (15) yields

0 <
∫ ∞

1+δ
gk(t)e

bt dt <
eb(1+δ)

a
dk

and since 0 < d < 1 the right hand side clearly tends to zero as k →∞, which
proves equation (11) and finishes the proof of Lemma 4.1.
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An immediate consequence of Lemma 4.1 and equation (4) is that

lim
k→∞

∫ 1+δ

1−δ
gk(t) dt = 1. (17)

We can now prove Lemma 3.1.

Proof of Lemma 3.1: Since φ is continuous we may, for any ε > 0, choose
some δ so that |φ(t)− φ(1)| < ε for all t with 1− δ < t < 1 + δ. We then have
∫ ∞

0
gk(t)φ(t) dt−

∫ 1+δ

1−δ
gk(t)φ(1) dt =

∫ 1+δ

1−δ
gk(t)(φ(t)− φ(1)) dt

+
∫ 1−δ

0
gk(t)φ(t) dt +

∫ ∞

1+δ
gk(t)φ(t) dt

so that
∣∣∣∣∣
∫ ∞

0
gk(t)φ(t) dt−

∫ 1+δ

1−δ
gk(t)φ(1) dt

∣∣∣∣∣ ≤ ε
∫ 1+δ

1−δ
gk(t) dt

+

∣∣∣∣∣
∫ 1−δ

0
gk(t)φ(t) dt

∣∣∣∣∣ +
∣∣∣∣
∫ ∞

1+δ
gk(t)φ(t) dt

∣∣∣∣ .

From Lemma 4.1 and the fact that φ is of exponential order we find that the
last two integrals on the right above approach zero as k → ∞, and since ε is
arbitrary we conclude that

lim
k→∞

∫ ∞

0
gk(t)φ(t) dt = lim

k→∞

∫ 1+δ

1−δ
gk(t)φ(1) dt = φ(1)

by equation (17), which proves the claim.

5 Conclusion

As noted, Theorem 2.1 does not provide a very practical means for inverting
the Laplace Transform in general, since repeated differentiation of F (s) gen-
erally leads to unwieldy expressions. Nonetheless, it does illustrate why the
inversion of the Laplace Transform is so ill-posed, for the inversion formula
requires derivatives of arbitrarily high order, impossible to compute from real
data.

It would be interesting to consider what quantity the inversion formula
would recover when applied to a function with jump discontinuities. Specif-
ically, let f be continuous from the left and right at a point x, but have a
jump discontinuity at x, with f(x+) and f(x−) the limits from the right and
left, respectively. Based on Figure 2 (and simple numerical experiments) one
would expect that the inversion formula should recover (f(x+)+f(x−))/2, but
the author has not seen nor written out a proof of this.
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