Search and Inference with Diagrams

Michael Wollowski, Ph.D.

Associate Professor of Computer Science and Software Engineering
Rose-Hulman Institute of Technology
Terre Haute, IN 47803, USA
Motivation

- Search engines search text
- People prefer diagrammatic representations
- Diagrams are typically stored as image files
- Information in image files cannot be searched
Sample Diagram

4-Year GPA by Gender

<table>
<thead>
<tr>
<th>Year</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>2001</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2002</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>2003</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Outline

• Approach taken
• Theoretical background
• Sample document
• Search engine
• Inference engine
• Conclusions
Approach

- Represent information in XML format
- Render XML files as charts
- Provide custom-fit search and inference engine
Process

XML File
Contains information and meta-data

SVG File
Display data

Stored on web server; accessible to search engine

Server-side processing (when file is requested)

Client-side display
Benefits of our Approach

• Information is semantically annotated
• Information is accessible to search and inference engines
• Diagrams help people extract information
Theoretical Background

• People successfully use charts to represent and extract information
• Charts are highly structured, as such a syntax can be given for them just like for FOL
• A semantics for charts can be given either directly or by correspondence
<?xml version="1.0" ?>
<chart type="bar">
	<title>4-Year GPA by Gender</title>
	<legend />
	<plotarea>
		<axis variable="x1">Year</axis>
		<axis variable="x2" min="0" max="4.0"
			step="0.5">GPA</axis>
	</plotarea>
	<dataset label="Men">
		<datapoint x1="2000" x2="2.6" />
		<datapoint x1="2001" x2="2.8" />
		<datapoint x1="2002" x2="2.9" />
		<datapoint x1="2003" x2="3.0" />
	</dataset>
	<dataset label="Women">
		<datapoint x1="2000" x2="2.5" />
		<datapoint x1="2001" x2="2.8" />
		<datapoint x1="2002" x2="3.0" />
		<datapoint x1="2003" x2="3.1" />
	</dataset>
</chart>
4-Year GPA by Gender

- Men
- Women

Year

2000 2001 2002 2003
Correspondence of XML and Diagram

<?xml version="1.0" ?>
<chart type="bar">
 <title>4-Year GPA by Gender</title>
 <legend />
 <plotarea>
 <axis variable="x1">Year</axis>
 <axis variable="x2" min="0" max="4.0" step="0.5">GPA</axis>
 </plotarea>
 <dataset label="Men">
 <datapoint x1="2000" x2="2.6" />
 <datapoint x1="2001" x2="2.8" />
 <datapoint x1="2002" x2="2.9" />
 <datapoint x1="2003" x2="3.0" />
 </dataset>
 <dataset label="Women">
 <datapoint x1="2000" x2="2.5" />
 <datapoint x1="2001" x2="2.8" />
 <datapoint x1="2002" x2="3.0" />
 <datapoint x1="2003" x2="3.1" />
 </dataset>
</chart>
Key XML Components

- **Datapoint** element for each piece of data
- **Dataset** elements enclose & label datapoints
- **Title** and **legend** elements for annotations
- **Plotarea** specifies axis labels and decoration
- **Chart type** element to specify kind of chart (bar, line, or pie chart)
Software Components

- **XML Schema** for 2D bar, line, and pie-charts
- **Servlet** that processes XML files and outputs SVG files
- **XSL stylesheet** for invoking servlet
- **Sample files** containing student information
Diagrammatic Search Engine

This is an experimental search and inference engine to search bar, line, and pie charts satisfying the ChartSchema.xsl XML Schema.

women

Search

Increasing
None
Minimum
Maximum
Average
Median
Increasing
Decreasing
Results Screen

Results for: **women** with inference **Increasing**

1. 4-Year GPA by Gender: http://localhost:8080/servlets/xml/barchart.xml
 - **Women** (Data increases.)
 - Year: 2000 GPA: 2.5
 - Year: 2001 GPA: 2.8
 - Year: 2002 GPA: 3.0
 - Year: 2003 GPA: 3.1

2. 4-Year GPA by Gender: http://localhost:8080/servlets/xml/barchart2.xml
 - **Women** (Data increases.)
 - Year: 2000 GPA: 2.5
 - Year: 2001 GPA: 2.8
 - Year: 2002 GPA: 2.8
 - Year: 2003 GPA: 3.1
Key Ideas

• **Search engine** takes advantage of semantic nature of elements
• It locates explicitly contained information
• **Inference engine** makes available implicitly contained information
• It supports determining the: *minimum*, *maximum*, *median*, and *average* of data that satisfies a query, as well as whether the data *increases* or *decreases*
Software Components

- An XML search and inference engine servlet
Conclusions

• We developed a general process of storing diagrammatic information in a sentential format
• Stored information is accessible to inference engines yet rendered as diagram
• Our system is sufficiently general to store information that is typically displayed in bar, line, or pie-charts
• We modified the XML Schema so that data from MS Spreadsheets can be automatically extracted to our XML format
Future Work

• 3D charts
• Determining trends
• Diagrams other than charts