1 (A) What are the roots modulo 7 of the polynomial \(P(x) = x^7 - x \)?

(B) Determine the roots of \(f(x) = x^9 + x^7 - x^3 + x - 6 \) modulo 7 by applying the division algorithm using the polynomial \(P(x) = x^7 - x \) to get polynomials \(q(x), r(x) \) satisfying \(f(x) = P(x)q(x) + r(x) \), where \(r(x) \) has degree less than \(P(x) \).

(C) Factor the polynomial \(f(x) = x^9 + x^7 - x^3 + x - 6 \) modulo 7 into linear terms and a non-linear polynomial, \(NL(x) \).

Can you show that the non-linear polynomial has no roots modulo 7? Start by looking at \(NL(x) - 2 \).

2 The polynomial \(f(x) = 2x^3 - 2x^2 - 2x + 2 \) has roots modulo \(10^{20} - 1 \) at \(x = 1, 10, -10 \). Show that if \(10^{20} - 1 \) were prime, then \(f(x) \) has no other roots, by considering \(f(x) - k \cdot (x - 1)(x - 10^{10})(x + 10^{10}) \) modulo \(10^{20} - 1 \) for an appropriate value of \(k \).

Since \(10^{20} - 1 \) factors, it is possible to find other roots to the polynomial by using the Chinese Remainder Theorem. What are the factors of \(10^{20} - 1 \)? What does this imply for the number of roots of \(f(x) \)?

3 (A) Let \(p \) be an odd prime. Determine the values of the polynomial \(1 - (x - a)^{p-1} \) modulo \(p \) for all residues \(x \).

(B) Construct a polynomial \(f(x) \) so that \(f(5) \equiv 7 \pmod{11} \) and \(f(x) \equiv 0 \pmod{11} \) if \(x \not\equiv 5 \pmod{11} \).

(C) Construct a polynomial \(f(x) \) so that \(f(x) = \begin{cases} 7 \pmod{11} & \text{if } x \equiv 5 \pmod{11} \\ 3 \pmod{11} & \text{if } x \equiv 7 \pmod{11} \\ 0 \pmod{11} & \text{otherwise} \end{cases} \)

Theorem 2.29 in the book (page 94) states that the congruence \(f(x) \equiv 0 \pmod{p(x)} \) of degree \(n \), with leading coefficient \(a_n = 1 \), has \(n \) solutions if and only if \(f(x) \) is a factor of \(x^p - x \) modulo \(p \).

4 (A) Use Theorem 2.29 to prove that if \(d \mid (p-1) \) then \(x^d \equiv 1 \pmod{p} \) has exactly \(d \) solutions.

(B) The corollary that you just proved implies that \(x^3 \equiv 1 \pmod{p} \) has exactly three solutions modulo \(p \) when \(p \equiv 1 \pmod{3} \). \(p = 195, 019, 441 \) is a prime congruent to 1 modulo 3. \(161051^3 \equiv 1 \pmod{p} \). Find the other two roots. (Hint: factor the polynomial!)