Basic Engineering Science —
A Systems, Accounting, and Modeling Approach

D. E. Richards
Professor of Mechanical Engineering
Rose-Hulman Institute of Technology

Winter 2001 Version

Course Notes for ES 201 - Conservation & Accounting Principles
“Engineers, unlike physicists, are after useful artifacts and must predict the performance of the objects they design.”

“Organization according to control-volume ideas is thus not only simpler but brings clearer understanding of the physical principles common to otherwise disparate situations.”

“In the end the requirements that have tipped the scales in favor of control-volume analysis lie in the goal or mission of the engineer—to design and produce useful artifacts.”

“Practicing engineers are always on the lookout for more effective tools with which to think and do.”

“By organizing knowledge according to physical laws rather than known problems, it aids in recognizing a control-volume problem when met in an unfamiliar disguise.”

“Control-volume analysis, by setting up an explicit method of bookkeeping for the various flow quantities, provides such a procedure for the many engineers who must deal with fluid-mechanical devices.”

“Control-volume analysis is useful precisely because it provides a framework and method for thinking clearly about a large class of the often confusing problems that arise in engineering design.”

Walter G. Vincenti in *What Engineers Know and How They Know It* 1

Preface

The words above were originally written about the development of the control volume 2 as a tool for analysis in thermodynamics and fluid mechanics. However, if you replace the phrases “control-volume ideas” and “control-volume approach” with the phrase “system, accounting, and modeling approach,” the words apply equally well to the thrust of this textbook.

The current textbook is based on a different paradigm for organizing an engineering science core—a system, accounting, and modeling approach—that emphasizes the common, underlying concepts of engineering science. Although this approach is not necessarily new, as most graduate students have been struck by this idea sometime during their graduate education, its use as the organizing principle for an undergraduate curriculum is new. By focusing on the underlying concepts and stressing the similarities between subjects that are often perceived by students (and faculty) as unconnected topics, this approach provides students a framework for recognizing and building connections as they learn new material.

Background

In 1988, a group of faculty members at Texas A&M University began work on a new integrated curriculum to replace the core engineering science courses in a typical curriculum. The result was an interdisciplinary sequence of four courses called the Texas A&M/NSF Engineering Core Curriculum 3 and organized around what they called the conservation and accounting principle. Glover, Lundsford, and Fleming produced an introductory textbook 4 that used this approach. More recently Holtzapple and

2 A control volume is a region in space as opposed to a fixed quantity of matter that is used for analysis. In mechanics, the use of a control volume is called the Eulerian approach while using a control mass, a fixed quantity of matter, is called the Lagrangian approach.

Reece have introduced this approach in a freshman text. Recently, the author has also learned of a similar approach being promoted and developed by Prof. W. C. Reynolds at Stanford University for a course called ME10: Introduction to Engineering Analysis. Calls to consider a systems approach have also come from physicists.

In 1993, seven schools came together as the Foundation Coalition (FC) under the auspices of the NSF Engineering Education Coalitions Program. One of the major thrusts of the FC was curriculum integration. Building on the earlier work at Texas A&M, Rose-Hulman developed a new sophomore engineering curriculum—the Rose-Hulman/Foundation-Coalition Sophomore Engineering Curriculum (SEC). The curriculum is currently required for all Rose-Hulman students majoring in mechanical engineering, electrical engineering, and computer engineering.

The Sophomore Engineering Curriculum

The SEC is a required, eight-course sequence of engineering science and mathematics courses completed during the sophomore year. The SEC covers material traditionally taught in dynamics, fluid mechanics, thermodynamics, electrical circuits, system dynamics, differential equations, matrix algebra, and statistics. Two faculty-student teams developed the curriculum and its content during the summers of 1994 and 1995. The curriculum was first taught in the fall of 1995. Currently the SEC consists of the eight courses shown in the table below:

<table>
<thead>
<tr>
<th>Sophomore Engineering Curriculum</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Quarter</td>
<td></td>
</tr>
<tr>
<td>MA 221 Differential Equations and Matrix Algebra I (4)</td>
<td>8</td>
</tr>
<tr>
<td>ES 201 Conservation & Accounting Principles (4)</td>
<td></td>
</tr>
<tr>
<td>Winter Quarter</td>
<td>13</td>
</tr>
<tr>
<td>MA 222 Differential Equations and Matrix Algebra II (4)</td>
<td></td>
</tr>
<tr>
<td>ES 202 Fluid & Thermal Systems (3)</td>
<td></td>
</tr>
<tr>
<td>ES 203 Electrical Systems (3)</td>
<td></td>
</tr>
<tr>
<td>ES 204 Mechanical Systems (3)</td>
<td></td>
</tr>
<tr>
<td>Spring Quarter</td>
<td>9</td>
</tr>
<tr>
<td>MA 223 Statistics for Engineers (4)</td>
<td></td>
</tr>
<tr>
<td>ES 205 Analysis & Design of Engineering Systems (5)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
</tr>
</tbody>
</table>

One of the unique features of the SEC is the 1–3–1 sequence for the engineering science courses. The sequence starts with a general course ES201 in the fall. In the winter, the courses are more discipline/phenomena specific with ES 202, 203, and 204. Finally in the spring, the focus again becomes more general with ES 205.

This Textbook

This textbook is based on over five years experience in teaching the first engineering science course in the SEC, called ES201: Conservation and Accounting Principles. ES201 is taken during the first

6 W. C. Reynolds, Introduction to Engineering Analysis: An integrated approach to the fundamental principles that underlie all engineering analysis. Notes under development by Prof. W. C. Reynolds at Stanford University.

9 Eight courses on a quarter system for a total of thirty quarter-credit hours spread over three quarters.
quarter of the sophomore year and introduces the systems, accounting, and modeling approach as the basis for engineering analysis. The content of ES201 as mapped to traditional engineering science courses is shown in the table below:

<table>
<thead>
<tr>
<th>Fluid Mechanics</th>
<th>Electrical Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>Conservation of net charge</td>
</tr>
<tr>
<td>Absolute vs. gage pressure</td>
<td>Kirchhoff's Current Law</td>
</tr>
<tr>
<td>Forces due to uniform pressure</td>
<td>Node voltages</td>
</tr>
<tr>
<td>Integral equations for control volumes</td>
<td>Simple dc circuits</td>
</tr>
<tr>
<td>Reynolds transport equation</td>
<td></td>
</tr>
<tr>
<td>Conservation of mass</td>
<td></td>
</tr>
<tr>
<td>mass and volume flow rate</td>
<td></td>
</tr>
<tr>
<td>continuity equation</td>
<td></td>
</tr>
<tr>
<td>Conservation of linear momentum</td>
<td></td>
</tr>
<tr>
<td>Conservation of angular momentum</td>
<td></td>
</tr>
<tr>
<td>Conservation of energy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermodynamics</th>
<th>Engineering Statics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic concepts: system, property, state</td>
<td>Kinematics of rigid bodies</td>
</tr>
<tr>
<td>P-v-T relation for ideal gas: pV = mRT</td>
<td>Linear and angular momentum of a system of particles</td>
</tr>
<tr>
<td>Simple substance models with constant specific heats</td>
<td>Principle of impulse and momentum</td>
</tr>
<tr>
<td>Ideal gas model</td>
<td>Kinetic energy</td>
</tr>
<tr>
<td>Incompressible substance model</td>
<td>Principle of work and energy</td>
</tr>
<tr>
<td>Conservation of energy and the First Law of Thermodynamics</td>
<td>Variable systems of particles (Open systems or Control volumes)</td>
</tr>
<tr>
<td>Mechanical concepts of work and energy</td>
<td>Steady stream of particles</td>
</tr>
<tr>
<td>Thermodynamic work</td>
<td>Systems gaining or losing mass</td>
</tr>
<tr>
<td>Energy of a system: internal, kinetic and gravitational potential</td>
<td>Kinetic and potential energy</td>
</tr>
<tr>
<td>Energy transfers by work: pdV work, shaft work, electrical work</td>
<td>Principle of work and energy</td>
</tr>
<tr>
<td>Energy transfer by heat transfer</td>
<td>Examination of simple thermodynamics cycles</td>
</tr>
<tr>
<td>Energy balance for open and closed systems</td>
<td>Power, Heat Pump and Refrigeration Cycles</td>
</tr>
<tr>
<td>Entropy and the second law of thermodynamics</td>
<td>Measures of Performance</td>
</tr>
<tr>
<td>Reversible and irreversible processes</td>
<td>Performance of internally reversible cycle.</td>
</tr>
<tr>
<td>Second law of thermodynamics</td>
<td></td>
</tr>
<tr>
<td>Entropy transfer by heat transfer</td>
<td></td>
</tr>
<tr>
<td>Entropy production in irreversible processes</td>
<td></td>
</tr>
<tr>
<td>Entropy balance for open and closed systems</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material and Energy Balances</th>
<th>Engineering Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molar and mass flow rate</td>
<td>Kinematics of particles</td>
</tr>
<tr>
<td>Mixture composition</td>
<td>Rectilinear and curvilinear motion</td>
</tr>
<tr>
<td>Balanced chemical equations</td>
<td>Rectangular components</td>
</tr>
<tr>
<td>Production/consumption of chemical species in chemical reactions</td>
<td>Relative motion</td>
</tr>
<tr>
<td>Chemical species accounting for systems with chemical reactions</td>
<td>Newton's second law of motion</td>
</tr>
<tr>
<td></td>
<td>Equations of motion</td>
</tr>
<tr>
<td></td>
<td>Dry (Coulomb) friction</td>
</tr>
<tr>
<td></td>
<td>Principle of impulse and momentum</td>
</tr>
<tr>
<td></td>
<td>Impulsive motion</td>
</tr>
<tr>
<td></td>
<td>Mechanical work</td>
</tr>
<tr>
<td></td>
<td>kinetic and potential energy</td>
</tr>
<tr>
<td></td>
<td>Principle of work and energy</td>
</tr>
</tbody>
</table>

After a general discussion of the approach in the first two chapters, six fundamental physical laws are formulated using the systems and accounting framework. The fundamental laws are related to six extensive properties—mass, charge, linear momentum, angular momentum, energy, and entropy. In each case, the physical law is introduced by answering four questions about the pertinent extensive property:
• What is the property in question?
• How can it be stored in a system,
• How can it be transported across the system boundary?
• How can it be generated or consumed inside the system?

The answers to these questions provide the information to formulate each law within a systems and accounting framework. Once these questions are answered, the behavior of the property for a system can be described using an accounting (or balance) equation. All but one of the physical laws are conservation principles. Although not a conservation principle, the sixth law (entropy accounting) is important because entropy can only be produced or in the limit of an internally reversible process conserved. A summary of the basic physical laws formulated in the systems and accounting framework can be found in the appendix.

Once the governing equations are developed the emphasis shifts to the analysis of system behavior. With the basic laws formulated in a consistent fashion, the problem becomes one of identifying the appropriate system, selecting and applying the pertinent accounting equations, and constructing a problem specific model. Throughout the text a consistent problem solving approach is emphasized regardless of the underlying physical laws. Again this is based on a series of generic questions as shown in the tables below:

<table>
<thead>
<tr>
<th>Written Format</th>
<th>Typical Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Known</td>
<td>• What’s the system?</td>
</tr>
<tr>
<td>• Find</td>
<td>• What properties should we count?</td>
</tr>
<tr>
<td>• Given</td>
<td>• What’s the time interval?</td>
</tr>
<tr>
<td>• Analysis</td>
<td>• What are the important interactions?</td>
</tr>
<tr>
<td>— Strategy</td>
<td>• How do the basic equations simplify?</td>
</tr>
<tr>
<td>— Constructing the Model</td>
<td>• What are the unknowns?</td>
</tr>
<tr>
<td>— Symbolic Solution</td>
<td>• How many equations do I need?</td>
</tr>
<tr>
<td>— Numerical Solution</td>
<td>• What are the important constitutive relations?</td>
</tr>
<tr>
<td>• Comments</td>
<td></td>
</tr>
</tbody>
</table>

This is another benefit of using the systems and accounting framework to organize the material. As an example, all problems involving linear momentum begin from the conservation of linear momentum equation. From this single starting point, problem specific forms can be obtained by applying appropriate modeling assumptions, e.g. closed vs. open system and transient vs. steady state vs. finite time. Using appropriate, problem specific assumptions, we can quickly recover any of the “standard” forms, e.g. $F = ma$, $\sum F = 0$, impulse-momentum equation, and the steady-state linear momentum balance for fluid mechanics. In each case, the emphasis is not on the final form of the equation but on the modeling assumptions and how they change the basic equations.

A Request of Students and Faculty

As the first effort to generate a complete textbook from a mushrooming set of notes, there are surely errors and omissions in the text. For these the author takes full credit and asks your help in identifying mistakes in this text. To eliminate these in future editions, you are encouraged to contact the author directly with any errors or omissions you identify.

You are also encouraged to contact the author and share your views about the systems, accounting, and modeling approach that forms the basis for this text. It is the author’s firm belief that this approach has much to contribute to engineering education and that we have only begun to explore and exploit its potential impact. A major strength of the approach is in how it forms a foundation for advanced work. Faculty members are encouraged to explore how they can use what students learn from this text as a springboard to learning in related and advanced courses.
Acknowledgements

No textbook springs fully formed as an original contribution from the mind of an author, and this book is no exception. Although the author had long considered the use of an integrated approach in teaching of thermodynamics, heat transfer, and fluid mechanics, the Texas A&M group broadened his conception of how an integrated approach could unify engineering science education. Charles Glover and Louis Everett were especially helpful in sharing ideas and encouragement.

On the Rose-Hulman campus, the faculty and students on the SEC team developed an approach that has served us well. Special thanks are due those individuals who taught ES201 in the early the years: Howard McLean, Phil Cornwell, Jerry Fine, and Fred Berry. Their comments and concerns about the approach were freely shared and are reflected in the current text. Bruce Black provided critical insight into how this approach meshes with traditional circuit analysis. More recently Mallory North, Tom Adams, Jim Mayhew, Richard Layton, and Clark Merkel have provided feedback on the course and the text. Thanks are also due the sophomore electrical engineering and computer engineering students who inaugurated the SEC in the fall of 1995. Their comments were many and varied, and the program is better today for their willingness to speak out.

The author is especially grateful for an invitation to join the local Rose-Hulman/Foundation-Coalition management team in spring of 1993. The support of that team—Jeff Froyd, Gloria Rogers, Brian Winkel, and Jim Eifert—and their ongoing friendship over the years has been a significant source of encouragement. The author also wishes to thank the Foundation Coalition for supporting these efforts through the Engineering Education Program of the National Science Foundation (Award Number EEC-9802942). The Foundation Coalition is a network of extraordinary people who care about engineering education, and it has been a privilege for the author to work with this group.

The author wishes to thank the administration, staff, and faculty at Rose-Hulman for its commitment to undergraduate education and for nurturing and supporting innovative efforts like this textbook and the SEC. Rose-Hulman is a unique educational institution because of its unwavering commitment to quality undergraduate education in the sciences, mathematics, and engineering. This does not happen without a continuing effort by the entire Rose-Hulman community.

Last but definitely not least, the author would like to thank his wife and daughters—Martha, Abby, and Emma—for their love and support.

Donald E. Richards
Professor of Mechanical Engineering

Rose-Hulman Institute of Technology
5500 Wabash Avenue, CM 160
Terre Haute, IN 47803-3999

Homepage: www.rose-hulman.edu/~richards
Email: donald.e.richards@rose-hulman.edu
Voice 812-877-8477 / FAX 812-877-8025

November 2001
TABLE OF CONTENTS

Preface

Chapter 1 – Introduction
 1.1 What is Engineering?1-2
 1.2 Engineering Analysis and Engineering Design1-3
 1.3 Science, Engineering Science, and Mathematics 1-4
 1.4 Modeling and Engineering Analysis 1-5
 1.4.1 What is a Model?1-5
 1.4.2 Types of Models1-7
 1.4.3 Modeling Heuristics and Algorithms1-7
 1.5 Modeling an Engineering System 1-8
 1.6 Conservation & Accounting – A Useful Framework ... 1-9
 1.7 What’s Next? ..1-10
 1.8 Problems ..1-11

Chapter 2 – Basic Concepts
 2.1 System, Property, State & Process .. 2-2
 2.1.1 System .. 2-2
 2.1.2 Property .. 2-5
 2.1.3 State ... 2-6
 2.1.4 Process .. 2-6
 2.1.5 Properties and Processes – A Test ... 2-6
 2.2 The Accounting Concept ... 2-7
 2.2.1 Rate Form of the Accounting Concept ... 2-7
 2.2.2 Finite-Time Form of the Accounting Concept ... 2-11
 2.3 Conservation .. 2-13

Chapter 3 – Conservation of Mass
 3.1 Four Questions .. 3-2
 3.1.1 What is mass? ... 3-2
 3.1.2 How can mass be stored in a system? ... 3-3
 3.1.3 How can mass be transported across a system boundary? 3-5
 3.1.4 How can mass be created or destroyed? ... 3-5
 3.1.5 Putting it all together .. 3-5
 3.2 Mass Flow Rate .. 3-6
 3.3 Conservation of Mass Equation .. 3-11
 3.4 Mixture Composition ... 3-26
 3.4.1 Molar Mass and the Amount of Substance .. 3-26
 3.4.2 Composition on a Mass Basis .. 3-28
 3.4.3 Composition on a Molar Basis .. 3-28
Table of Contents

3.4.4 Mixture Molar Mass ... 3-29
3.4.5 Converting Mixture Composition Basis 3-29
3.5 Accounting of Chemical Species .. 3-31
3.5.1 Experimenting with Conservation of Mass 3-32
3.5.2 Accounting Equation for Chemical Species 3-33
 Mass Basis for Compound i .. 3-33
 Molar Basis for Compound i ... 3-34
3.5.3 Application of Chemical Species Accounting 3-34
 Systems with Chemical Reactions ... 3-35
3.5.4 Systems without Chemical Reactions .. 3-35
3.6 Density, Specific Volume, Specific Weight and Specific Gravity 3-43
3.6.1 Density and Specific Volume .. 3-43
3.6.2 Specific Weight .. 3-45
3.6.3 Specific Gravity ... 3-45
3.7 Constitutive Equations .. 3-45
3.8 Ideal Gas Model – A Useful Constitutive Relation 3-47
3.9 Problems ... 3-49

Chapter 4 – Conservation of Charge

4.1 Four Questions ... 4-2
 4.1.1 What is electric charge? .. 4-2
 4.1.2 How is charge stored in a system? .. 4-3
 4.1.3 How can charge be transported across the boundary of a system? 4-4
 4.1.4 How can electric charge be generated or consumed inside the system? 4-4
4.2 Conservation of Charge ... 4-5
4.3 Physical Circuits and the Lumped-Circuit Model 4-6
4.4 Ohm’s “Law” – A Constitutive Relation .. 4-7
4.5 Simple Resistive Circuits ... 4-8
4.6 Problems ... 4-14

Chapter 5 – Conservation of Linear Momentum

5.1 Four Questions ... 5-2
 5.1.1 What is linear momentum? .. 5-2
 Kinematics of a particle .. 5-3
 Rectilinear motion ... 5-4
 Plane curvilinear motion .. 5-7
 Relative motion ... 5-7
 5.1.2 How can linear momentum be stored in a system? 5-9
 Center of mass ... 5-9
 Plane motion of a rigid body ... 5-12
 5.1.3 How can linear momentum be transported across a system boundary? 5-12
Transport of linear momentum with force .. 5-13
 Body forces .. 5-14
 Surface forces .. 5-15
 Surface forces due to pressure ... 5-15
Transport of linear momentum with mass flow .. 5-19
5.1.4 How can linear momentum be generated or destroyed in a system? 5-20
5.1.5 Putting it all together! .. 5-21
5.2 Conservation of Linear Momentum Equation .. 5-24
 Guidelines for Drawing a Linear Momentum (Free-body) Diagram 5-26
5.3 Friction Forces .. 5-39
5.4 Linear Impulse, Linear Momentum, and Impulsive Forces 5-43
 5.4.1 Linear Impulse .. 5-43
 5.4.2 Impulsive Forces .. 5-44
5.5 Linear Momentum Revisited ... 5-48
 Using Relative Velocities .. 5-48
 Motion with Cylindrical Coordinates .. 5-52
5.6 Problems ... 5-56

Chapter 6 – Conservation of Angular Momentum
6.1 Why is this thing turning? .. 6-2
 6.1.1 Moment of a force about a point ... 6-3
 6.1.2 Moment of a force couple ... 6-6
6.2 Four Questions .. 6-8
 6.2.1 What is angular momentum? ... 6-8
 6.2.2 How can angular momentum be stored in a system? 6-8
 Plane motion of a plane system ... 6-8
 A plane system with translation ... 6-9
 A plane system with rotation about a fixed, centroidal axis 6-11
 6.2.3 How is angular momentum transported across a system boundary? 6-13
 Angular momentum transport with forces ... 6-13
 Angular momentum transport with mass flow .. 6-13
 6.2.4 How can angular momentum be generated or consumed in a system? 6-14
 6.2.5 Putting it all together ... 6-14
6.3 Conservation of Angular Momentum Equation .. 6-15
6.4 Problems ... 6-27

Chapter 7 – Conservation of Energy
7.1 Mechanics and the Mechanical Energy Balance .. 7-2
 7.1.1 Mechanical Work and Mechanical Power ... 7-2
 Mechanical Work .. 7-2
 Mechanical Power ... 7-4
Table of Contents

7.1.2 The Work-Energy Principle ... 7-4
 Work-Energy Principle for a Particle ... 7-5
 Work-Energy Principle for a System of Particles 7-8

7.1.3 The Mechanical Energy Balance .. 7-13

7.1.4 An Additional Mechanical Energy – Spring Energy 7-14

7.2 Four Questions ... 7-18
 7.2.1 What is energy? ... 7-18
 Thermodynamic Work .. 7-19
 Adiabatic Process, Boundary, and System 7-19
 First Law of Thermodynamics ... 7-19
 7.2.2 How can energy be stored in a system? 7-21
 Types of Energy .. 7-21
 Specific Energy and the Energy of a System 7-23
 7.2.3 How can it be transported? .. 7-23
 Energy transport by work .. 7-23
 Compression-Expansion (PdV) Work .. 7-25
 Shaft work and power ... 7-28
 Electrical work and power ... 7-29
 Flow work and power ... 7-30
 Work and power for a system .. 7-30
 Energy Transport with mass flow ... 7-31
 Energy transport by heat transfer .. 7-31
 7.2.4 How can energy be created or destroyed? 7-32
 7.2.5 Putting it all together ... 7-33
 Energy, enthalpy and the mass flow terms 7-33
 Rate form of the conservation of energy 7-34

7.3 Conservation of Energy Equation .. 7-35

7.4 Substance Models ... 7-48
 7.4.1 Ideal Gas Model with Room-Temperature Specific Heats 7-48
 Basic Assumptions ... 7-48
 P-v-T Relationship ... 7-49
 Changes in u and h ... 7-49
 Specific heat relationships ... 7-50
 7.4.2 Incompressible Substance Model with Room-Temperature Specific Heats 7-50
 Basic Assumptions ... 7-50
 P-v-T Relationship ... 7-51
 Changes in u and h ... 7-51
 Specific heat relationships ... 7-52
 7.4.3 Summary of our substance models .. 7-52

7.5 Flow Work & Flow Power Revisited .. 7-63
 Definitions ... 7-63
 Systems with mass flow in .. 7-63
Systems with mass flow out... 7-65
Systems with multiple inlets and outlets.. 7-65

7.6 Work & Power Revisited... 7-66
7.7 Heat Transfer Revisited ... 7-69
 7.7.1 Key concepts ... 7-69
 7.7.2 Conduction Heat Transfer... 7-70
 7.7.3 Convection Heat Transfer ... 7-71
 7.7.4 Thermal Radiation Heat Transfer ... 7-72
7.8 Electrical Energy Storage and Transfer .. 7-75
 7.8.1 Instantaneous and Average Power ... 7-75
 Instantaneous Electric Power ... 7-75
 Average Electric Power .. 7-76
 7.8.2 AC Power and Effective Voltage and Current 7-77
 7.8.3 Storage of Electrical Energy .. 7-79
 Resistor .. 7-80
 Capacitor .. 7-80
 Inductor ... 7-82
 Battery ... 7-83
 7.8.4 AC Power and Steady-state Systems 7-84
7.9 Thermodynamic Cycles... 7-85
 7.9.1 Key Features and Examples .. 7-85
 7.9.2 Classifying cycles ... 7-86
 Classification by Working Fluid ... 7-86
 Classification by Physical Structure 7-86
 Classification by Purpose .. 7-88
 7.9.3 Quantifying Cycle Performance .. 7-88
 Measure of Performance .. 7-89
 MOP for a Power Cycle .. 7-89
 MOP for a Refrigeration Cycle ... 7-89
 MOP for a Heat Pump Cycle ... 7-90
7.10 Problems .. 7-93

Chapter 8 – Entropy Production and Accounting
8.1 Four Questions .. 8-2
 8.1.1 What is entropy ... 8-2
 Everyday experiences ... 8-2
 Reversible and Irreversible Processes 8-4
 Second Law of Thermodynamics ... 8-5
 Entropy .. 8-6
 8.1.2 How can entropy be stored in a system? 8-7
 8.1.3 How can entropy be transported? .. 8-7
Table of Contents - 6

Entropy transport by heat transfer ... 8-7
Entropy transport by mass flow ... 8-8
8.1.4 How can entropy be generated or consumed?................................. 8-8
8.1.5 Putting it all together ... 8-9
8.2 Empirical and Thermodynamic Temperature .. 8-9
8.2.1 Temperature and Thermal Equilibrium .. 8-10
8.2.2 Empirical Temperature ... 8-10
8.2.3 Thermodynamic Temperature .. 8-11
8.3 Entropy Accounting Equation ... 8-13
 Typical Modeling Assumptions ... 8-13
 Problem Solving with the Entropy Accounting Equation 8-17
8.4 Thermodynamic Cycles – Revisited ... 8-30
 8.4.1 Power Cycles.. 8-30
 8.4.2 Refrigeration and Heat Pump Cycles .. 8-35
8.5 Entropy and the Substance Models .. 8-39
 8.5.1 Relating s to T, P, u, h, and v — The Tds relations 8-39
 8.5.2 Δs — Ideal Gas Model ... 3-40
 8.5.3 Δs — Incompressible Substance Model 8-42
 8.5.4 Examples ... 8-43
8.6 Problems ... 8-49

Appendices
A Solving Engineering Problems — A Problem Solving Heuristic
B Dimensions and Units
 B.1 Dimensions and Units .. B-1
 B.2 Systems of Units and Dimensions .. B-1
 B.3 Calculations with Dimensions and Units .. B-2
 B.3.1 Dimensional Homogeneity ... B-2
 B.3.2 Converting Units ... B-2
 B.4 Handling Units in Equations ... B-4
 B.5 Weight and Mass ... B-5
 B.6 Problems ... B-6
C Useful Information
 Summary of Conservation & Accounting Equations
 Unit Conversions
 Property Models
 Thermophysical Property Data