ES201 - Examination 2 Fall 2003-2004 Instructor: _____________________
Class Period _________________

NAME___BOX NUMBER_______________

Problem 1 (22) ________________
Problem 2 (26) ________________
Problem 3 (26) ________________
Problem 4 (26) ________________

Total (100) ________________

INSTRUCTIONS

- Closed book/notes exam. (Unit conversion page provided)
- Help sheet allowed. (8-1/2 x 11” sheet of paper, one side)
- Laptops may be used; however, no pre-prepared worksheets or files may be used.

1) Show all work for complete credit.
 - Start all problems at the ANALYSIS stage, but clearly label any information you use for your solution.
 - Problems involving conservation principles MUST clearly identify the system and show a clear, logical progression from the basic principle(s). For FULL CREDIT, you must clearly show and label all momentum transfers on a free-body diagram for your system.
 - Don't expect us to read your mind as to how or why you did something in the solution. Clearly indicate how you arrived at your answer and how you used the given information in the process.
 - Always crunch numbers last on an exam. The final numerical answer is worth the least amount of points. (Especially if all we would have to do is plug in the numbers into a well-documented solution.)

2) Useful Rule of Thumb (Heuristic): (100 point exam)/(90 min) ≈ 1 point/minute. That means a 10 point problem is not worth more than 10 minutes of your time (at least the first time around).

3) Please remain seated until the end of class or everyone finishes. (Raise your hand and I’ll pick up your exam if you have other work you need or want to do.)

<table>
<thead>
<tr>
<th>USEFUL INFORMATION</th>
<th>SI</th>
<th>USCS</th>
<th>Molar Mass [kg/kmol; lbm/lbmol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal Gas Constant: R_u</td>
<td>8.314 kJ/(kmol-K)</td>
<td>1545 (ft-lbf)/(lbmol-o°R)</td>
<td>Air 28.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.986 Btu/(lbmol-o°R)</td>
<td>O_2 32.00</td>
</tr>
<tr>
<td>Standard Acceleration of Gravity: g</td>
<td>9.810 m/s²</td>
<td>32.174 ft/s²</td>
<td>N_2 28.01</td>
</tr>
<tr>
<td>Density of liquid water</td>
<td>1000 kg/m³</td>
<td>62.4 lbm/ft³</td>
<td>H_2 2.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.94 slug/ft³</td>
<td>CO_2 44.01</td>
</tr>
</tbody>
</table>
Length
- 1 ft = 12 in = 0.3048 m = 1/3 yd
- 1 m = 100 cm = 1000 mm = 39.37 in = 3.2808 ft
- 1 mile = 5280 ft = 1609.3 m

Mass
- 1 kg = 1000 g = 2.2046 lbm
- 1 lbm = 16 oz = 0.45359 kg
- 1 slug = 32.174 lbm

Temperature Values
- (T/K) = (T/°R) / 1.8
- (T/K) = (T/°C) + 273.15
- (T/°C) = [(T/°F) - 32] / 1.8
- (T/°R) = 1.8(T/K)
- (T/°R) = (T/°F) + 459.67
- (T/°F) = 1.8(T/°C) + 32

Temperature Differences
- (∆T/°R) = 1.8(∆T/°K)
- (∆T/°R) = (∆T/°F)
- (∆T/°K) = (∆T/°C)

Volume
- 1 m³ = 1000 L = 10⁶ cm³ = 10³ mL = 35.315 ft³ = 264.17 gal
- 1 ft³ = 1728 in³ = 7.4805 gal = 0.028317 m³
- 1 gal = 0.13368 ft³ = 0.0037854 m³

Volumetric Flow Rate
- 1 m³/s = 35.315 ft³/s = 264.17 gal/s
- 1 ft³/s = 1.6990 m³/min = 7.4805 gal/s = 448.83 gal/min

Force
- 1 N = 1 kg·m/s² = 0.22481 lbf
- 1 lbf = 1 slug·ft/s² = 32.174 lbm·ft/s² = 4.4482 N

Pressure
- 1 atm = 101.325 kPa = 1.01325 bar = 14.696 lbf/in²
- 1 bar = 100 kPa = 10⁵ Pa
- 1 Pa = 1 N/m² = 10⁻³ kPa
- 1 lbf/in² = 6.8947 kPa = 6894.7 N/m²
 [lbf/in² often abbreviated as “psi”]

Energy
- 1 J = 1 N·m
- 1 kJ = 1000 J = 737.56 ft·lbf = 0.94782 Btu
- 1 Btu = 1.0551 kJ = 778.17 ft·lbf
- 1 ft·lbf = 1.3558 J

Energy Transfer Rate
- 1 kW = 1 kJ/s = 737.56 ft·lbf/s = 1.3410 hp = 0.94782 Btu/s
- 1 Btu/s = 1.0551 kW = 1.4149 hp = 778.17 ft·lbf/s
- 1 hp = 550 ft·lbf/s = 0.74571 kW = 0.70679 Btu/s

Specific Energy
- 1 kJ/kg = 1000 m²/s²
- 1 Btu/lbm = 25037 ft²/s²
- 1 ft·lbf/lbm = 32.174 ft²/s²
Problem 1 (22 points)

(a) (4) Identify by name all the mechanisms available for transferring linear momentum into or out of a system.

(b) (2) When a pressure force acts on the boundary of a system, it acts in (Circle One)
 i. the direction normal to the boundary;
 ii. the direction tangent to the boundary;
 iii. either the direction normal or tangent to the boundary

(c) (4) The time-varying force shown in the graph is applied to drive a rolling cart on a smooth horizontal surface. What is the net change in linear momentum of the cart due to this force after 26 seconds? Assume that the cart rolls without friction and the mass of the cart is 10 kg.
Problem 1 (continued)

(d) (4) A 2-meter door is free to rotate about the Hinge O under the applied force. What is the resultant moment about point O due to this force? Clearly indicate magnitude and direction.

\[F = 10 \text{ N} \]
\[L = 2 \text{ m} \]

(e) (4) For the steady-state system shown at right, the Conservation of Angular Momentum Principle about point O, using the right hand rule (CCW is positive), simplifies to one of the following. Circle the correct formulation:

i) \[0 = M_0 - \dot{m}_1 b V_1 + \dot{m}_2 a V_2 \]
ii) \[0 = M_0 + \dot{m}_1 c V_1 - \dot{m}_2 d V_2 \]
iii) \[0 = M_0 - \dot{m}_1 c V_1 + \dot{m}_2 d V_2 \]
iv) \[0 = M_0 + \dot{m}_1 b V_1 - \dot{m}_2 a V_2 \]

(f) (4) Suppose that we have a block sitting on horizontal table as shown in the figure. The static coefficient of friction is μ_s, and the kinetic coefficient of friction is μ_k. The mass of the block is m and the local acceleration of gravity is g. Initially the tension in the rope is zero and the block is stationary. Slowly, we begin to pull on the block. Plot the magnitude of the friction force exerted on the table versus the tension T in the rope.
Problem 2 (26 points)

You have been asked to investigate the performance of a jet-propelled boat using a water channel where the water velocity V_{water} can be varied as required. The boat is placed in the channel and tethered so that it is stationary. The boat is jet-propelled by a pump that develops a constant volumetric flow rate of water, \dot{V}_{pump}. Water enters the aft (front) of the boat through an area of A_1 and leaves at the stern (rear) through an area A_2.

Water flowing over the hull of the boat exerts a drag force on the boat in the direction the water is flowing. This horizontal drag force which includes the net pressure forces on the hull is given by the following equation:

$$F_{\text{drag}} = k V_{\text{water}}^2$$

where k is a constant.

Assume that the angle θ and water density ρ are both known.

a) Find expressions for the water velocities V_1 and V_2 in terms of the pump flow rate, \dot{V}_{pump}.

b) Find an expression for the volumetric flow rate through the pump \dot{V}_{pump} as a function of the water velocity in the channel, V_{water}, when the tension in the tether is zero, i.e. $\dot{V}_{\text{pump}} = f(V_{\text{water}})$.

![Diagram of jet-propelled boat and water channel with water flow and tether angles labeled.]
Problem 3 (26 points)

You have been hired by NASCAR to analyze vehicle impacts into the wall. For the crash at right, solve for the average reactions ($R_{x,avg}$ and $R_{y,avg}$) of the wall on the car in terms of the mass of the vehicle m, the initial velocity V_1, the angle θ, the distances h and d, and the time interval $\Delta t = t_2 - t_1$ assuming the vehicle comes to a complete stop during the time interval.

Feel free to assume that the car remains a rectangle during the impact.
Problem 4 (26 points)

As part of a school bus safety test program, school buses are being tested for potential roll-over hazards. To test the bus, it is placed on 1000-pound moveable concrete pad that rolls freely without friction. The horizontal motion of the pad is produced by a hydraulic ram which pulls the pad to left. A 5000-pound school bus is placed on the pad as shown in the figure.

(a) Assuming the bus does not slip on the pad, determine the minimum value of the horizontal acceleration \((dV/dt)\) of the pad in the direction indicated that will cause the bus to tip, in \(\text{ft/s}^2\).

(b) Determine the force, in lbf, that the ram must apply to the platform to produce the acceleration found in part (a).

(c) Determine the minimum static coefficient of friction between the tires and the concrete pad that is required to keep the bus from slipping on the moving pad.