Roark’s Formulas for Stress and Strain

WARREN C. YOUNG

Sixth Edition

McGraw-Hill, Inc.
New York San Francisco Washington, D.C. Auckland Bogotá
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore
Sydney Tokyo Toronto
Library of Congress Cataloging-in-Publication Data
Roark's formulas for stress and strain.
Includes bibliographies and indexes.
1. Strength of materials—Tables. 2. Strains and stresses—Tables. I. Young, Warren C. (Warren Clarence), date. II. Title. III. Title: Formulas for stress and strain
TA407.2.R6 1989 624.1'76'0212
ISBN 0-07-072541-1

Copyright © 1989 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

880 DOCDOC 9654

ISBN 0-07-072541-1

The editors for this book were Harold B. Crawford and Susan Thomas, the designer was Naomi Auerbach, and the production supervisor was Suzanne W. Babeuf. It was set in Century Schoolbook by Datapage International.

Printed and bound by the R. R. Donnelley & Sons Company.

Information contained in this work has been obtained by McGraw-Hill, Inc., from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantees the accuracy or completeness of any information published herein and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

List of Tables ix
Preface to the Sixth Edition xi
Preface to the First Edition xiii

Part 1 Definitions

Chapter 1 Definitions
References

Part 2 Facts; Principles; I

Chapter 2 The Behavior of Bo

Chapter 3 Principles and Anal

Chapter 4 Experimental Meth

Chapter 5 Properties of a Pla
For the L-shaped configuration where a flat interior plate occupies the lower and central region, we refer to Ref. 16.

\[
E_{\text{L}}(16) \quad \frac{E}{t} = \begin{cases}
\sqrt{\frac{2E}{t}} & \text{if } E > \frac{t^2}{2} \\
0 & \text{if } E < \frac{t^2}{2}
\end{cases}
\]

where \(E \) is the modulus of elasticity and \(t \) is the thickness of the plate.

For the L-shaped configuration where a flat interior plate occupies the lower and central region, we refer to Ref. 16.

\[
E_{\text{L}}(16) \quad \frac{E}{t} = \begin{cases}
\sqrt{\frac{2E}{t}} & \text{if } E > \frac{t^2}{2} \\
0 & \text{if } E < \frac{t^2}{2}
\end{cases}
\]

where \(E \) is the modulus of elasticity and \(t \) is the thickness of the plate.