ES 202
Fluid and Thermal Systems

Lecture 16:
Property Tables
(1/20/2003)

Road Map of Lecture 16

• Quiz on Lecture 15
• Phase determination in various regions
• Data interpolation
 – linear
 – bi-linear
• Compressed Liquid Approximation
• Practice with property tables
Phase Determination (Case 1)

- **Case 1**: Given \(P \) and \(T \)
 - Look up saturation table
 - Compare given \(P \) and \(T \) against saturation values in the table

- In pressure table,
 - Recall constant pressure line on \(T-v \) diagram
 - If \(T < T_{sat}(P) \),
 compressed liquid.
 - If \(T = T_{sat}(P) \),
 saturated liquid-vapor mixture.
 - If \(T > T_{sat}(P) \),
 superheated vapor.

Phase Determination (Case 1 Cont’d)

- **Case 1**: Given \(P \) and \(T \)
 - Look up saturation table
 - Compare given \(P \) and \(T \) against saturation values in the table

- In temperature table,
 - Recall constant temperature line on \(P-v \) diagram
 - If \(P > P_{sat}(T) \),
 compressed liquid.
 - If \(P = P_{sat}(T) \),
 saturated liquid-vapor mixture.
 - If \(P < P_{sat}(T) \),
 superheated vapor.
Phase Determination (Case 2)

• **Case 2**: Given P (or T) and v (or u, h, s)
 - Look up saturation table
 - Find saturated liquid and vapor values for v (or u, h, s) at $P_{sat} = P$
 1) If $v < v_f(P_{sat})$,
 compressed liquid.
 2) If $v = v_f(P_{sat})$,
 saturated liquid.
 3) If $v_f(P_{sat}) < v < v_g(P_{sat})$,
 saturated liquid-vapor mixture.
 4) If $v = v_g(P_{sat})$,
 saturated vapor.
 5) If $v > v_g(P_{sat})$,
 superheated vapor.

Flow Chart

- Determine phase of substance
 - Compressed liquid: Direct look up
 - Two-phase: Determine quality, Interpolate other properties
 - Superheated vapor: Direct look up
Data Interpolation

- The property tables only tabulate discrete values for pressure or temperature as the independent property.

- If you are interested in values which do not fall on the tabulated data points, interpolation within the “sandwich” interval will be necessary.

- Since the property tables report data at small intervals, linear interpolation should be adequate for most purposes.
 - Give example

- If both independent, intensive thermodynamic properties do not fall on the tabulated data points, bi-linear interpolation is necessary to completely specify the thermodynamic states.
 - Give example

Compressed Liquid Approximation

- If you find
 - the substance is a compressed (subcooled) liquid;
 - the compressed liquid table is unavailable or inadequate,

you may invoke the compressed liquid approximation:

\[
\begin{align*}
 u(T, P) &\approx u_f(T) \\
 v(T, P) &\approx v_f(T) \quad \text{(weak function of } T) \\
 s(T, P) &\approx s_f(T) \\
 h(T, P) &\approx u_f(T) + Pv_f(T) = h_f(T) + [P - P_{sat}(T)]v_f(T)
\end{align*}
\]