Pin List

1: VddIn 11: In 21: X 31: In
2: out2 12: X 22: clkOut 32: out5
4: out1 14: X 24: X 34: X
5: bias 15: chipGnd 25: chipVdd 35: padVdd
6: X 16: X 26: out6 36: X
7: X 17: X 27: GndOut 37: X
8: X 18: X 28: X 38: out4
9: In 19: GndIn 29: In 39: out3
10: X 20: X 30: X 40: X

Notes:
- chipVdd (25) and chipGnd (15) are used to power output buffers for out1:out6
- Vdd (1), chipVdd (25) and padVdd (35) may be connected together
- gnd (19) and chipGnd(15) may be connected together
- all In (9, 11, 29, 31) inputs may be connected together and then connected to a debounced digital switch
- bias (5) is used to bias output amplifiers embedded in voltage output pads
PinOut For Power/Ground Bounce Chip

Pin List

1: X 11: In 21: X 31: In
2: out2 12: X 22: clkOut 32: out5
4: out1 14: GndIn 24: X 34: X
5: bias 15: chipGnd 25: chipVdd 35: padVdd
6: X 16: VddIn 26: out6 36: X
7: X 17: X 27: GndOut 37: X
8: X 18: X 28: X 38: out4
9: In 19: X 29: In 39: out3
10: X 20: clkIn 30: X 40: clkIn

Notes:
• chipVdd (25) and chipGnd (15) are used to power output buffers for out1:out6
• chipVdd (25), padVdd (35), and VddIn (16) may be connected together
• GndIn (14) and chipGnd (15) may be connected together
• all In (9, 11, 29, 31) inputs may be connected together and then connected to a debounced digital switch
• bias (5) is used to bias output amplifiers embedded in voltage output pads
• both clkIn (20, 40) inputs may be connected together
PinOut for Single Board to test Both Chips

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- The pinout was chosen so that the same board can be used for either the clock skew lab or the power/ground bounce lab. The input to the flip-flops and the outputs are connected to the same pins for both chips.
- VddOut, GndOut, and clkOut are connected to the same pins for both chips.
- ClkIn, VddIn, and GndIn are connected to different pins for each chip.
- ChipVdd (25) and ChipGnd (15) are used to power output buffers for out1:out6.
- Vdd (1), ChipVdd (25), padVdd (35) and VddIn (16) may be connected together.
- Gnd (19), ChipGnd (15) and GndIn (14) may be connected together.
- All In (9, 11, 29, 31) inputs may be connected together and then connected to a debounced digital switch.
- Bias (5) is used to bias output amplifiers embedded in voltage output pads.
- All clkIn (13, 20, 40) inputs may be connected together.
The input (In) is a common connection to every flip-flop. Every flip-flop has an inverter in the cell. Power and the clock signal is routed as shown in the previous diagrams.