Problem 1

For the circuits below, V_{in} is a $\pm 15V$ Triangle wave. Plot V_o and V_{in}.

a)

![Circuit Diagram](image)

b)

![Circuit Diagram](image)

c)

![Circuit Diagram](image)

Problem 2

For each circuit in Problem 1, use PSPICE to

a) plot $V_o(t)$ and $V_{in}(t)$

b) plot the transfer curve V_o vs V_{in}

See PSPICE book section 6F
Problem 3

- in both circuits, $C = 1 \mu F$
- The switches close at $t = 0$

a) For each circuit, write an equation for $V_C(t)$

b) We would like the approximate circuit to be within 1% accuracy of the actual circuit for calculating $V_C(t)$. For what values of t is $V_C(t)$ of the approximate circuit within 1% of $V_C(t)$ of the actual circuit?
Problem 4

Design the biased clamp so that the droop at the output is less than 1% for loads $\geq 10\, k\Omega$.