Problem 1

Download National Semiconductor's Switchers made Simple Software Version 3.3 and install it.

- Design a Boost DC-DC converter with the following specs:

 \[8.0V \leq V_{in} \leq 9.5V \]
 \[0^\circ \leq T \leq 75^\circ C \]
 \[V_0 = 15V \]
 \[0 \leq I_0 \leq 1Amp \]

- Turn in a Parts List and a Schematic.

- If you have trouble printing the Parts List or Schematic, save the design and e-mail it to me as an attachment.
Problem 2

For this problem, assume the opamp is ideal except for the offset voltage as shown

\[V_{10} = 1 \text{mV} \]

Find \(V_o \) due to \(V_{10} \) for the circuits below.

Circuit 1

\[V_1 \]
\[R \]
\[+ \quad \frac{R}{+} \quad + \]
\[R \]
\[- \quad \frac{R}{-} \quad - \]

\[V_2 \]

When would \(V_{10} \) be significant for this circuit?

Circuit 2

\[V_1 \]
\[R \]
\[+ \quad \frac{R}{+} \quad + \]
\[R \]
\[- \quad \frac{R}{-} \quad - \]

\[V_2 \]

\[V_o \]
Problem 3
Assume the opamp is ideal except for bias currents (I_B, on page 189 of the notes). Find V_0 due to bias currents for the circuit below.

\[I_B = 10 \mu A \]

Problem 4
Find the gain, V_0/V_s for the circuit below.