Problem 1

- Make a Thevenin equivalent out of V_s, R_s and R_2.
- Using the Thevenin equivalent circuit, show that

$$\frac{V_o}{V_m} = -\frac{R_F}{R_S}$$

Problem 2

9) Use Thevenin equivalents to find an equivalent circuit and find $V_{TH} + R_{TH}$.
Problem 2 continued

b) Use source transformation techniques to find the equivalent circuit.

\[\text{Find } I \text{ and } R \]

Problem 3

\[\begin{array}{c}
\text{1k} \\
\text{1k} \\
\text{1k} \\
\end{array} \]

\[\begin{array}{c}
\text{3V} \\
\text{1mA} \\
\text{+} \\
\text{RL} \\
\end{array} \]

a) Specify a numerical value for \(RL \) so that \(RL \) absorbs the maximum amount of power available.

b) Find the max power absorbed by \(RL \).
a) Using nodal analysis write 4 equations that could be solved for V_1, V_2, V_3, and V_4

b) Use an equation solver to solve the equations for V_1, V_2, V_3, and V_4

c) Use pSpice to verify your result.