Problem 3.1
Determine the EOM relating the input θ_i to the output θ_{LOAD} for the torsional system shown. Neglect the mass of the gears.

A motor with a pinion (total rotary inertia J) drives a rack (mass M) that actuates a spool valve that is restrained by a spring K. The valve acts as an equivalent damper D. The pinion radius is R. The input torque from the motor is $T(t)$.

a) Find a differential equation relating the input torque to the output displacement of the rack, $x(t)$,
b) Determine the natural frequency of the system,
c) Determine the damping ratio of the system?

A fluid transmission can be represented by a damper D that drives a load (moment of inertia J) and a spring K. Determine a differential equation relating the input θ_1 to the output θ.

Problem 3.4
For the system shown below, the input is $f_a(t)$ and the output variables are x, θ_1, and θ_3. Write the three differential equations of motion for the system in second order matrix form.