Consider a closed system undergoing a process over time.

\[\delta Q - \delta W = \delta W = \delta W \]

Conservation of Energy

\[\frac{d}{dt}(E)_{sys} = \dot{Q} + \dot{W} + \dot{E}_o - \dot{E}_o \]

\[d = \quad \text{(no KE or PE)} \]

\[d = \quad \text{(1)} \]

Accounting of Entropy

\[\frac{d}{dt}(S)_{sys} = \sum \frac{\dot{Q}}{T_0} + \dot{E}_o - \dot{E}_o + \dot{S}_{cen} \]

\[dS = \quad \text{= } \quad \text{=} \]

Substituting into (1)

Solve for \(Tda \)

The 1st \(Tda \) Relation

From def'n of \(h \)

\[h = u + pu \quad \therefore \quad dh = \]

Solving for \(du \)

\[du = \]
SUB INTO 1ST TdQ RELATION

\[TdQ = \]
\[TdQ = \]

SECOND TdQ RELATION

TRUE! BUT THESE EQN'S ARE GOOD FOR ANY SUBSTANCE AND ANY PROCESS!

NOW FOR AN IDEAL GAS

\[dQ = \frac{dH}{T} - \frac{U}{T} \, dP \]

\[\Delta Q = \]

\[\Delta Q_2 - \Delta Q_1 = \]

IF YOU USE 1ST T-dQ RELATION

\[\Delta Q_2 - \Delta Q_1 = \int_{T_1}^{T_2} C_v \, \frac{dT}{T} + R \ln \left(\frac{U_2}{U_1} \right) \]

*GET IT? TEDIOUS? HA!
Ideally gases are ideal. What if they aren't?

Introducing...

The compressibility factor

\[Z = \] for an ideal gas

Data for non-ideal behavior well-correlated on

Generalized compressibility chart

\[P_R = \frac{P}{P_T} \]

\[T_R = \frac{T}{T_T} \]

"Reduced" P * T

More to come...