LET'S DESIGN A LINK

WHAT THINGS AFFECT WHETHER OR NOT THE LINK FAILS?

- ULTIMATE TENSILE STRENGTH (UTS)
- THICKNESS
- LENGTH (MANUFACTURING TOLERANCES)
- HOW PINS ARE LOADED
 - PINS BEND 1ST?
 - PINS STRAIGHT?
- HOW LONG IN SERVICE? (CORROSION, DEGRADATION)
- LOADING?
 - TENSION / COMPRESSION?
 - CYCLIC / STEADY?
- CRACKS AROUND HOLES?
- EXTRA MATERIAL NEEDED TO REINFORCE

HOW **PREDICTABLE** WOULD YOU SAY MANY OF THESE THINGS ARE? **NOT VERY**

```
00 FACTOR OF SAFETY (FOS)
```
Key Idea: FOS makes things safer!

Let's assume our link will fail by fracture at an ultimate tensile strength of 90 ksi.

For a $FOS = \frac{3}{4}$, what stress should the link be designed for?

- a. 90 ksi
- b. 30 ksi
- c. 270 ksi
- d. Schifty-five

What FOS to use? (Typical Values)
- Structural stuff $\rightarrow 2.5$
- Aircraft $\rightarrow 1.25 - 2$

Why not make $FOS = 10$?
- Weight
- Cost

Where do you get guidelines for FOS?
- Design standards
- Industry experience
- High when you don't know much

Diagram:
- σ: Yield strength
- σ_y: U.S. LE
 - Fails by yielding
 - Use σ_y in FOS
 - Fails by fracture
 - Use σ_u in FOS