Quiz 2 – Properties-Microstructure-Processing
Callister Chapters, 7,3,4

You need to know/be able to

- Name the two types of solid solutions (interstitial and substitutional) and explain how they differ.
- Describe the difference between amorphous and crystalline and state how that structure affects properties.
- Name the three most common types of unit cells for metals and explain how the unit cell affects properties.
- State the relationship of dislocation motion and planar slip on the behavior of metals, and explain how it affects strength and ductility.
- For the following processes, determine (from graphs and/or calculations) the strength/ductility and describe the governing microstructural mechanism:
 - Solid Solution Strengthening
 - Grain Size Refinement
 - Cold Work and Annealing
- For Cold Work and Annealing:
 - Calculate %cold work from change in cross-sectional geometry
 - Describe the microstructural and property changes during Recovery, Recrystallization and Grain Growth, and the relationship between microstructure and properties
 - Use tables and graphs (such as fig. 7.19) to design a process that will produce a set of desired properties

Vocabulary

Chapter 7

- Cold working
- Dislocation Density
- Grain Growth
- Lattice Strain
- Recovery
- Recrystallization

Recrystallization Temperature
- Slip
- Slip System
- Solid-solution strengthening
- Strain hardening

Chap 3

- Amorphous
- Anisotropy
- Body-centered-cubic
- Crystal structure
- Crystalline
- Face Centered-cubic
- Grain Boundary
- Hexagonal close-packed
- Isotropic
- Noncrystalline
- Polycrystalline
- Unit cell

Chap 4

- Alloy
- edge dislocation
- interstitial solid solution
- microstructure
- screw dislocation

- solid solution
- solute
- solvent
- substitutional solid solution
- vacancy
Exam 2 Review

Metal Crystal Structures

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Properties</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC</td>
<td>Face-Centered-cubic</td>
<td>Ductile at all temps</td>
<td>Aluminum, copper, Nickel</td>
</tr>
<tr>
<td>BCC</td>
<td>Body-centered-cubic</td>
<td>ductile-brittle transition with temp or strain rate</td>
<td>Iron (steel) tungsten</td>
</tr>
<tr>
<td>HCP</td>
<td>Hexagonal-close-packed</td>
<td>less ductile</td>
<td>Magnesium, zinc</td>
</tr>
</tbody>
</table>

FCC

This is a close packed structure (packing factor is 0.74, max possible). Has close packed planes and close packed directions in several orientations. Excellent slip systems leads to excellent ductility.

BCC

Not a close packed structure (packing factor of 0.68). No close packed planes, several close packed directions. Good slip systems lead to good ductility unless cold or rapidly loaded.

HCP

Close packed structure with close packed planes and directions. Unfortunately, the planes are only in one orientation. One excellent slip system in a single orientation leads to less ductility. (Mag wheels vs Al wheels)

(Figures from Materials Science and Engineering, An Introduction by Callister)

Dislocations

Edge Dislocation: An "extra" half plane of atoms; a line defect in a crystal

Screw Dislocation: A line defect similar to a tearing a phone book.

(Figures from Materials Science and Engineering, An Introduction by Callister)

Importance: Dislocations make planar slip much easier. Since only one row of atoms moves at a time, many fewer atomic bonds must break for plastic deformation to occur.
Grand Truth - Strengthening in metals
1. Yield strength is the onset of plastic flow
2. Plastic flow results from planar slip
3. Planar slip results from dislocation motion

Therefore

To increase Strength - Prevent/Impede Dislocation Motion

Ductility Corollary
1. Impeding dislocation motion makes slip harder
2. Lower slip means lower ductility

Therefore:

Increasing Strength generally Lowers Ductility

Strengthening Methods for Metals

Grain Size Reduction - Small grained metals are stronger than coarse grained metals

<table>
<thead>
<tr>
<th>Yield Strength</th>
<th>Mechanism:</th>
<th>Process:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_y = \sigma_o + ky_d^{1/2}$</td>
<td>Grain boundaries block dislocation motion. More grains (smaller grains) means more boundaries and more blocking of dislocations</td>
<td>Cold work to add internal energy, anneal to recrystallize and form new small grains. Note: Strength increases without loss of toughness</td>
</tr>
</tbody>
</table>

Solid Solution Strengthening - Often alloying with a second element increases strength

<table>
<thead>
<tr>
<th>Strength</th>
<th>Mechanism:</th>
<th>Process:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect depends upon alloying element</td>
<td>Solute atoms are too big or too small and cause distortion in the crystal lattice</td>
<td>Add other elements to the melt e.g. add Al and V to Ti to get Ti6Al4V.</td>
</tr>
</tbody>
</table>

Strain Hardening (Cold Work) - Plastic deformation often increases strength

<table>
<thead>
<tr>
<th>Yield Strength</th>
<th>Mechanism:</th>
<th>Process:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of strengthening depends on material</td>
<td>Number of dislocations increases by orders of magnitude, distorting lattice and impeding dislocations</td>
<td>Mechanically deform plastically, (e.g. cold roll, wire draw)</td>
</tr>
</tbody>
</table>
Annealing - Reversing the effects of Strain Hardening

Stages

- **Recovery** - residual stresses are relieved
- **Recrystallization** - If previously cold worked, new equiaxed, strain-free grains nucleate from high energy regions.
- **Grain Growth** - Grains grow with higher temperature and longer time (diffusion -)

This process is best understood by remembering that everything is spontaneously heading toward lowest potential energy.

Therefore, if we have no cold work, we can have no annealing since we are already at lowest potential.

It is the high internal energy (from strain energy) of a cold worked metal that provides the energy potential for action. The increase in temperature adds enough energy (and interatomic distance) for diffusion to occur so the atoms can rearrange into new grains.

Note that the Recrystallization Temp is about 0.4*Absolute Melting temperature of the metal.

\[
\%\text{Cold Work} = \frac{A_0 - A_i}{A_0} (100\%)
\]

In Cold rolling only thickness changes