Section 1.1 Differential Equations and Mathematical Models, cont’d.

Obtaining differential equations from geometric conditions

• In some problems, we are given a geometric property of the graph of an unknown function \(g(x) \).
• We are then asked to determine what \(g(x) \) is.
• The first step in finding \(g(x) \) is to translate its geometric properties into a differential equation.
• For now we will focus only on this first step.

Example 1: The line tangent to the graph of \(g(x) \) at an arbitrary point \((x, y)\) passes through the point \((1, 2)\). Write a differential equation of the form

\[\frac{dy}{dx} = f(x, y) \]

having the function \(g \) as its solution (or one of its solutions).
Example 2: Every line normal to the graph of \(g(x) \) passes through the point \((1,0)\). Again, write a differential equation of the form

\[
\frac{dy}{dx} = f(x,y)
\]

having the function \(g \) as its solution (or one of its solutions).
Obtaining differential equations from situations

- Now we are going to attempt to do what is done in the "real world": Take the verbal description of a situation, and rewrite the description using a differential equation.
- Usually this step is harder than actually solving the differential equation.

Example 3: An English clergyman named Thomas Malthus argued that the rate of increase of the world’s population at any time was proportional to its size at that time. This rule is called *Malthus’ growth principle*. Restate Malthus’ growth principle using a differential equation.

Example 4: In a city having a fixed population of P persons, the time rate of change of the number N of people who have heard a certain rumor is proportional to the number of those who have not yet heard the rumor. Write a differential equation that is a mathematical model of this situation.

Solving differential equations using inspection

"Inspection" just means "guessing".

- Sometimes the derivatives $f', f'', f''', \text{ etc.}$ of a function $f(x)$ are the same type of function as f itself.

Example 5

(a) If $f(x)$ is a polynomial, what type of function are the derivatives of f?

(b) If $f(x)$ is of the form $a \cos x + b \sin x$, where a and b are constants, what type of function are the derivatives of f?
(c) If \(f(x) \) is of the form \(e^{ax} \) where \(a \) is a constant, what type of function are the derivatives of \(f \)?

• Now consider the differential equation
 \[y' + y = e^{2x}. \]
 • In light of example 5c, you might guess that \(y = ce^{2x} \), where \(c \) is a constant.
 • We can find the constant \(c \) by substituting \(ce^{2x} \) for \(y \) in the differential equation, and solving for \(c \):

Important: The inspection method gives just one solution of a differential equation, even though there may be infinitely many solutions. You’ll learn how to find all solutions later on.

Example 6: Determine by inspection a solution of the differential equation
\[y'' + y = x^2 + x \]

Hint: If \(y \) is a quadratic (degree two) polynomial, then so is the left hand side of the differential equation above. So begin by letting \(y = ax^2 + bx + c \), where \(a, b \) and \(c \) are arbitrary constants. Substitute this \(y \) into the differential equation above, and solve for \(a, b, \) and \(c \).
Example 7: If $y = 3e^{t^2}$ is known to be the solution of the initial value problem

$$y' + p(t)y = 0, \quad y(0) = y_0, \quad y_0 \text{ constant},$$

what must the function $p(t)$ and the constant y_0 be?

Example 8: For what values of the constants α, y_0, and integer n is the function

$$y(t) = (4 + t)^{-1/2}$$

a solution of the initial value problem?

$$y' + \alpha y^n = 0, \quad y(0) = y_0$$