Differential Equations and Matrix Algebra I
Worksheet #5
Professor Broughton

Name:__________________ Box #:__________________

1. complex arithmetic

Let $z = 2 + 3i$, $w = 3 + 4i$

\[
\begin{align*}
 z + w &= \\
 z - w &= \\
 zw &= \\
 \frac{z}{w} &= \\
 z\overline{z} &= \\
 z^4 &= \\
 w^{-5} &=
\end{align*}
\]
2. polar form

Put the following in polar form and plot the point on the axes following.

\[2 + 3i = \]
\[2 - 3i = \]
\[-2 + 3i = \]
\[-2 - 3i = \]
\[i = \]
\[-1 = \]
\[\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} = \]
3. complex arithmetic - geometry

On the axes below plot $z + w$, $z - w$, \overline{z}, zw, z/w and z^3 (because of a printing bug the - signs on the negative part of the axis show up as \pm signs).
4. trigonometric format

Write the following expression in (hyperbolic) trigonometric format

\[
\frac{e^{it} + e^{-it}}{2} = \\
\frac{e^{it} - e^{-it}}{2i} = \\
\frac{e^{(2+3i)t}}{2i} = \\
(4 + i)e^{(2+3i)x} + (4 - i)e^{(2-3i)x} = \\
3e^{(2+3i)x} + 5e^{(2-3i)x} = \\
3e^{5t} - 5e^{3t} =
\]

Write the following expression in exponential format

\[
\cos(x) = \\
e^{3x} \sin 2x = \\
3e^{3x} \sin 2x + 5e^{3x} \cos 2x = \\
3e^{3x} \sinh 2x + 5e^{3x} \cosh 2x =
\]