Signal Processing First

Lecture 17
IIR Filters: $H(z)$ and Frequency Response

LECTURE OBJECTIVES
- SYSTEM FUNCTION: $H(z)$
- $H(z)$ has POLES and ZEROS
- FREQUENCY RESPONSE of IIR
 - Get $H(z)$ first
 \[H(e^{j\omega}) = H(z) \bigg|_{z = e^{j\omega}} \]
- THREE-DOMAIN APPROACH

THREE DOMAINS

$H(z) = \text{z-Transform}\{ h[n] \}$

- FIRST-ORDER IIR FILTER:
 \[y[n] = a_1 y[n-1] + b_0 x[n] \]
 \[h[n] = b_0 (a_1)^n u[n] \]
 \[H(z) = \frac{b_0}{1 - a_1 z^{-1}} \]

First-Order Transform Pair

\[h[n] = b a^n u[n] \leftrightarrow H(z) = \frac{b}{1 - a z^{-1}} \]

DELAY PROPERTY of $X(z)$

- DELAY in TIME \leftrightarrow Multiply $X(z)$ by z^{-1}
 \[x[n] \leftrightarrow X(z) \]
 \[x[n-1] \leftrightarrow z^{-1} X(z) \]
Z-Transform of IIR Filter

- DERIVE the SYSTEM FUNCTION $H(z)$
- Use **DELAY** PROPERTY
 \[y[n] = a_1y[n-1] + b_0x[n] + b_1x[n-1] \]

SYSTEM FUNCTION of IIR

- NOTE the FILTER COEFFICIENTS

SYSTEM FUNCTION

- Given: DIFFERENCE EQUATION:
 \[y[n] = 0.8y[n-1] + 3x[n] - 2x[n-1] \]
- READ the FILTER COEFFS:

POLES & ZEROS

- Find the Poles and Zeros
- ROOTS of Numerator & Denominator
 \[H(z) = \frac{b_0 + b_1z^{-1}}{1 - a_1z^{-1}} \]

EXAMPLE: Poles & Zeros

- VALUE of $H(z)$ at POLES is **INFINITE**
 \[H(z) = \frac{2 + 2z^{-1}}{1 - 0.8z^{-1}} \]
 \[H(z) = \frac{2 + 2(-1)}{1 - 0.8(-1)} = 0 \]
 \[H(z) = \frac{2 + 2(0.8)^{-1}}{1 - 0.8(0.8)^{-1}} = 0 \rightarrow \infty \]

POLE-ZERO PLOT

- ZERO at $z = -1$
- POLE at $z = 0.8$
FREQUENCY RESPONSE

- SYSTEM FUNCTION: H(z)
- H(z) has DENOMINATOR
- FREQUENCY RESPONSE of IIR
 - We have H(z)
 \[H(e^{j\omega}) = H(z) \big|_{z = e^{j\omega}} \]
- THREE-DOMAIN APPROACH
 \[h[n] \leftrightarrow H(z) \leftrightarrow H(e^{j\omega}) \]

FREQUENCY RESPONSE

- EVALUATE on the UNIT CIRCLE
 \[H(e^{j\omega}) = H(z) \big|_{z = e^{j\omega}} \]
 \[H(z) = \frac{b_0 + b_1 z^{-1}}{1 - a_1 z^{-1}} \]
 \[H(e^{j\hat{\omega}}) = H(z) \big|_{z = e^{j\hat{\omega}}} = \frac{b_0 + b_1 e^{-j\hat{\omega}}}{1 - a_1 e^{-j\hat{\omega}}} \]

UNIT CIRCLE

- MAPPING BETWEEN \(z \) and \(\hat{\omega} \)
 - \(z = e^{j\omega} \)
 - \(z = 1 \leftrightarrow \hat{\omega} = 0 \)
 - \(z = -1 \leftrightarrow \hat{\omega} = \pm \pi \)
 - \(z = \pm j \leftrightarrow \hat{\omega} = \pm \frac{1}{2} \pi \)

MOVIE for H(z) in 3-D

- POLES to H(z) to Frequency Response
- TWO POLES SHOWN
Frequency Response from H(z)

Walking around the Unit Circle

3 DOMAINS MOVIE: IIR

PeZ Demo: Pole-Zero Placing