Signal Processing First

Lecture 11
Linearity & Time-Invariance Convolution

LECTURE OBJECTIVES
- GENERAL PROPERTIES of FILTERS
 - LINEARITY
 - TIME-INVARINCE
 - \(\implies \) CONVOLUTION
- BLOCK DIAGRAM REPRESENTATION
 - Components for Hardware
 - Connect Simple Filters Together to Build More Complicated Systems

OVERVIEW
- IMPULSE RESPONSE, \(h[n] \)
- FIR case: same as \(\{b_k\} \)
- CONVOLUTION
 - GENERAL: \(y[n] = h[n] \ast x[n] \)
 - GENERAL CLASS of SYSTEMS
 - LINEAR and TIME-INVARIANT
 - ALL LTI systems have \(h[n] \) & use convolution

BUILDING BLOCKS
- BUILD UP COMPLICATED FILTERS
 - FROM SIMPLE MODULES
 - Ex: FILTER MODULE MIGHT BE 3-pt FIR

DIGITAL FILTERING
- CONCENTRATE on the FILTER (DSP)
- DISCRETE-TIMESIGNALS
 - FUNCTIONS of \(n \), the “time index”
 - INPUT \(x[n] \)
 - OUTPUT \(y[n] \)

GENERAL FIR FILTER
- FILTER COEFFICIENTS \(\{b_k\} \)
- DEFINE THE FILTER
 \[
 y[n] = \sum_{k=0}^{M} b_k x[n - k]
 \]

 For example, \(b_k = \{3, -1, 2, 1\} \)
 \[
 y[n] = \sum_{k=0}^{3} b_k x[n - k] = 3x[n] - x[n-1] + 2x[n-2] + x[n-3]
 \]
MATLAB for FIR FILTER

- \(y = \text{conv}(bb, xx) \)
 - VECTOR \(bb \) contains Filter Coefficients
 - SP-First: \(y = \text{firfilt}(bb, xx) \)
- FILTER COEFFICIENTS \(\{b_k\} \)

\[
y[n] = \sum_{k=0}^{M} b_k x[n-k]
\]

SPECIAL INPUT SIGNALS

- \(x[n] = \text{SINUSOID} \)
- Frequency Response
- \(x[n] \) has only one NON-ZERO VALUE

UNIT-IMPULSE

FILTER COEFFICIENTS \(\{b_k\} \)

\[
\sum_{k=0}^{M} b_k x[n-k]
\]

FIR IMPULSE RESPONSE

- Convolution = Filter Definition
- Filter Coefs = Impulse Response

| \(n \) | \(n < 0 \) | 0 | 1 | 2 | 3 | \ldots | \(M \) | \(M+1 \) | \(n > M+1 \) |
|---|---|---|---|---|---|---|---|---|
| \(x[n] = \delta[n] \) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| \(y[n] = h[n] \) | 0 | \(b_0 \) | \(b_1 \) | \(b_2 \) | \(b_3 \) | \ldots | \(b_M \) | 0 | 0 |

\[
h[n] = \sum_{k=0}^{M} b_k \delta[n-k]
\]

MATH FORMULA for \(h[n] \)

- Use SHIFTED IMPULSES to write \(h[n] \)

\[
h[n] = 1 \quad \delta[n] \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0
\]

CONVOLUTION Example

\[
h[n] = \delta[n] - \delta[n-1] + 2\delta[n-2] - \delta[n-3] + \delta[n-4]
\]

\[
x[n] = u[n]
\]

LTI: Convolution Sum

- Output = Convolution of \(x[n] \) & \(h[n] \)
 - NOTATION: \(y[n] = h[n] * x[n] \)
 - Here is the FIR case:

\[
y[n] = \sum_{k=0}^{M} h[k] x[n-k]
\]

Same as \(b_k \).
Turn to Your Neighbor

- **FIR Filter** is “FIRST DIFFERENCE”
 - $y[n] = x[n] - x[n-1]$
- **INPUT** is “UNIT STEP”
 - $u[n] = \begin{cases} 1 & n \geq 0 \\ 0 & n < 0 \end{cases}$
- Find $y[n]$

HARDWARE STRUCTURES

- **INTERNAL STRUCTURE** of “FILTER”
 - **WHAT COMPONENTS ARE NEEDED?**
 - **HOW DO WE “HOOK” THEM TOGETHER?**
 - **SIGNAL FLOW GRAPH NOTATION**

HARDWAREATOMS

- **Add, Multiply & Store**
 - $y[n] = \sum_{k=0}^{M} b_k x[n-k]$

FIR STRUCTURE

- **Direct Form**
 - $y[n] = \sum_{k=0}^{M} b_k x[n-k]$

Moore’s Law for TI DSPs

- Double every 18 months?
SYSTEM PROPERTIES

\[x[n] \rightarrow \text{SYSTEM} \rightarrow y[n] \]

- MATHEMATICAL DESCRIPTION
- TIME-INVARIANCE
- LINEARITY
- CAUSALITY
 - “No output prior to input”

TIME-INVARIANCE

- IDEA:
 - “Time-Shifting the input will cause the same time-shift in the output”

- EQUIVALENTLY,
 - We can prove that
 - The time origin (n=0) is picked arbitrary

TESTING Time-Invariance

- IDEA:
 - Time-Shifting the input will cause the same time-shift in the output

 EQUIVALENTLY,
 - We can prove that
 - The time origin (n=0) is picked arbitrary

LINEARITY

- LINEARITY = Two Properties
- SCALING
 - “Doubling x[n] will double y[n]”

- SUPERPOSITION:
 - “Adding two inputs gives an output that is the sum of the individual outputs”

TESTING LINEARITY

LTI SYSTEMS

- LTI: Linear & Time-Invariant
- COMPLETELY CHARACTERIZED by:
 - IMPULSE RESPONSE \(h[n] \)
 - CONVOLUTION: \(y[n] = x[n] * h[n] \)
 - The “rule” defining the system can ALWAYS be rewritten as convolution
 - FIR Example: \(h[n] \) is same as \(b_k \)
Turn to Your Neighbor

- FIR Filter is “FIRST DIFFERENCE”
 - \(y[n] = x[n] - x[n-1] \)
- Write output as a convolution
 - Need impulse response

- Then, another way to compute the output:

CASCADE SYSTEMS

- Does the order of \(S_1 \) & \(S_2 \) matter?
 - NO, LTI SYSTEMS can be rearranged!!!
- WHAT ARE THE FILTER COEFS? \(\{ b_k \} \)

CASCADE EQUIVALENT

- Find “overall” \(h[n] \) for a cascade?

One View of DSP, c. 1976

- “That discipline which has allowed us to replace a circuit previously composed of a capacitor and a resistor with two anti-aliasing filters, an A-to-D and a D-to-A converter, and a general purpose computer (or array processor) so long as the signal we are interested in does not vary too quickly.”

 Thomas P. Barnwell, III