1. P-13.2

2. P-13.4 Do parts a and c by hand. Do all via MATLAB. Justify MATLAB’s answer to d using the Fourier transform properties you know. Based on your answer, define a signal $x_4[n]$ whose fft is $[0 \ 0 \ 0 \ 10 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$.

3. P-13.8 Plot the spectrogram in MATLAB to verify your answer.

4. For an N-point DFT, where N is even, show that $X\left[\frac{N}{2}\right]$ is always a real number if $x[n]$ is real.

MATLAB hints:

```matlab
fs = 8000; % Set the sampling rate
tt = 0:1/fs:1.2; % Set the time vector
xx1 = cos(2*pi*600*tt) .* (tt<0.5); % Turn on cosine for 0.5 seconds
xx2 = cos(2*pi*500*tt) .* (tt>0.4);

specgram(xx1+xx2, 256, fs) % Do a spectrogram with 256 point ffts.
```