1. (Decoder) Implement $F(A,B,C) = \Pi(0,3,4,7)$ with the following 1-of-8 decoder and an 8-input NAND gate. Connect all the enable pins and unused pins on the NAND gate properly.

2. (Decoder) Implement a two-bit subtractor with borrow using 74LS138 decoder chips and either 74LS20 or 74LS30 chips as needed. The subtractor has two 2-bit inputs A_1A_0 and B_1B_0. It has three bit output, D_1, D_0 and Borrow. $D_1D_0 = A_1A_0 - B_1B_0$ and Borrow when A_1A_0 is less than B_1B_0.

Implement your design with LogicWorks 4. Submit both your circuit schematic and waveforms with zero gate delay and show all input combinations. Mark the truth table on your waveforms.

(Make sure to tie unused inputs to “1” or “0” with binary switches. You need to click on the switches to activate them. Make the four input clock periods integer multiplex of each other to generate the truth table.)