For a system with plant

\[G_p(s) = \frac{s + 3}{s(s - 1)} \]

show that the quadratic optimal closed loop transfer function is

\[G_0(s) = \frac{10(s + 3)}{s^2 + 12.7s + 30} \]

when \(q = 100 \).

What are \(e_p \) and \(e_v \) for this system? (Ans. \(e_p = 0 \), \(e_v = 0.09 \))

For a system with plant

\[G_p(s) = \frac{s - 1}{s(s - 2)} \]

show that the quadratic optimal closed loop transfer function is

\[G_0(s) = \frac{-10(s - 1)}{s^2 + 11.1s + 10} \]

when \(q = 100 \).

What are \(e_p \) and \(e_v \) for this system? (Ans. \(e_p = 0 \), \(e_v = 2.11 \))
For a one degree of freedom system like we have in lab, with plant

\[G_p(s) = \frac{15}{0.0025s^2 + 0.0080s + 1} \]

a) Show that when \(q = 0.1 \) the quadratic optimal closed loop transfer function is

\[G_0(s) = \frac{1856.6}{s^2 + 55.5s + 1939.1} \]

and the position error is \(e_p = 0.043 \).

b) Show that the controller is given by

\[G_c(s) = \frac{0.0038s^2 + 0.012s + 1.5}{0.012s^2 + 0.67s + 1} \]

c) Using the *quadratic.m* program, plot the step response of this system for \(q = 0.01, q = 0.1, \) and \(q = 1 \). To use this program (which you’ll be using in lab this week), you first need to enter the estimated plant transfer function in the form

\[G_p(s) = \frac{K_{clg} \omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \]

quadratic.m has the input arguments

- The amplitude of the step input (assume 1 cm, so enter 1)
- The plant transfer function \(G_p(s) \)
- The value of \(q \).
- The length of time to plot the results (be sure the system has reached steady state, but not too long).
- The filename with data to compare the model to. In this case, type ” (two single quotes). In lab you’ll generate data for this part.

You should see that as \(q \) increases, which means the penalty on the difference between input and output is getting larger, the system should produce a smaller and smaller position error and response more and more quickly. If your final position error is not near 0, you’ve probably made a scaling mistake.
For the systems on the following page:

a) Determine the system type.

b) If the system is type 0 assume $G_{pf} = 1$ and determine the position error constant K_p and the position error e_p. Then determine the value of G_{pf} that makes the position error zero.

c) If the system is type 1, assume $G_{pf} = 1$ and determine the position error, the velocity error constant K_v, and the velocity error e_v. Is there any constant value of G_{pf} that can change the velocity error?

Ans. $e_p = \frac{3}{5}$ and $G_{pf} = \frac{5}{2}$, $e_p = \frac{3}{13}$ and $G_{pf} = \frac{13}{10}$, $e_v = \frac{3}{5}$, $e_v = \frac{4}{5}$, G_{pf} has no effect on e_v.