
GRADING POLICY

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) Exams</td>
<td>15% each</td>
</tr>
<tr>
<td>(Cumulative) Final Exam</td>
<td>20%</td>
</tr>
<tr>
<td>Labs (average of 3 lowest)</td>
<td>10%</td>
</tr>
<tr>
<td>Lab Practical</td>
<td>10%</td>
</tr>
<tr>
<td>Homework</td>
<td>10%</td>
</tr>
<tr>
<td>Matlab work</td>
<td>5%</td>
</tr>
</tbody>
</table>

Notes:

(1) In general, you must have a passing average (greater than or equal to 60%) on the exams to pass the class.

(2) Homework assignments are **due at 2:30 PM on Tuesday** No late homework will be accepted without prior approval.

(3) You must acceptably complete each lab to pass the class.

(4) Prelabs are **due at 2:30 PM on Tuesday**. These will actually be part of your homework assignment (and will count for both your homework and lab grades). Each person in the lab group is to do the prelab problems.

(5) You are expected to do your own work. You can certainly talk with each other and help each other, but the work you hand in should be your own. As an example, if two people hand in the same Matlab and both came from the same directory, neither will receive any points!

(6) Unless specifically told otherwise on a particular problem, you are expected to work out the problem by hand (or use Matlab). *If you write on your assignment that you used Maple and are copying the answer, expect to get no points.* You can use Maple to check your answers. You cannot turn in any Maple code or plot as part of the solution to a problem.
Labs:
A portion of your course grade (20%) is derived from your work in the laboratory exercises chosen to enhance the lecture material and your learning. You must want to participate to learn this material, and you will be rewarded for your work. PASS NOTHING UP -- that is the only way to truly learn. DO NOT let your lab partner do the work for you.

Your primary means of recording your work for the laboratory is by means of a laboratory notebook. Each student needs to keep a notebook, although normally you will be working with a lab partner. Each week one lab notebook will be turned in and graded and the other lab notebook will be used for the next week's lab. You and your lab partner will be allowed to use both lab notebooks for the lab practical.

1) Each lab is worth 25 points, 5 points for the Prelab and 20 points for the lab work and notebook.

2) Prelabs are due at 2:30 PM on Tuesday (as part of your homework). If your Prelab is not turned in at this time you will not be allowed to complete the lab.

3) Each lab will have three components entered into the lab notebook:
 • Prelab Exercises
 • Lab setup diagram
 • Lab results and instructor checkoffs

4) Your grade in the laboratory is determined by your lab work and your lab practical.

5) You will only be allowed to bring your lab notebooks and laptop to the lab practical--it is to your advantage to keep well maintained lab notebooks and make sure any software used or developed in lab is on both partners' laptops.

6) Refer to the course webpage for more information on notebook expectations.

7) You need to read the lab before you come to lab. If you read through the lab you will (hopefully) get the big picture and understand what we are trying to do. If you just blindly follow the steps in the lab with no thought as to where you are going, you will get little from the labs.
SYLLABUS

Class 1 (8/31) – Step, ramp, and impulse functions

Class 2 (9/4) – Periodic signals
Class 3 (9/5) – Power and energy signals
Lab 1 - Concept Inventory Exam
Class 4 (9/7) – System properties

Class 5 (9/11) - System properties
Class 6 (9/12) - Impulse Response
Lab 2 - Introduction to Matlab
Class 7 (9/14) – Convolution Properties

Class 8 (9/18) – Convolution
Class 9 (9/19) – Convolution
Lab 3 – Matlab scripts and functions
Class 10 (9/21) – Exam 1

Class 11 (9/25) – Fourier Series
Class 12 (9/26) – Fourier Series
Lab 4 – System impulse and step response
Class 13 (9/28) – Spectra

Class 14 (10/2) – Properties of Fourier Series
Class 15 (10/3) – Response of systems to periodic inputs
Lab 5 – Summing harmonic sinusoids
Class 16 (10/5) – Parseval’s Theorem, Gibbs Phenomena

Class 17 (10/9) – Fourier Transforms
Class 18 (10/10) – Fourier Transform properties
Lab 6 – Measurement of Fourier Coefficients

Class 19 (10/16) – Fourier Transform properties
Class 20 (10/17) – Fourier Transform properties
Lab 7 – Signal Spectra
Class 21 (10/19) – Exam 2

Class 22 (10/23) – Fourier Transform properties
Class 23 (10/24) – Fourier Transform Tables
Lab 8 – Audio Signals
Class 24 (10/26) – Response of systems to aperiodic inputs

Class 25 (10/30) - Response of a system to aperiodic inputs
Class 26 (10/31) - Analysis of ideal filters
Lab 9 - Filter Design
Class 27 (11/2) - Real Filters

Class 28 (11/6) – Sampling
Class 29 (11/7) - Exam 3
Lab 10 - Lab Practical
Class 30 (11/9) - Sampling