Datalog
Logical Rules
Recursion
SQL-99 Recursion

Logic As a Query Language
◆ If-then logical rules have been used in many systems.
 ▪ Most important today: EII (Enterprise Information Integration).
◆ Nonrecursive rules are equivalent to the core relational algebra.
◆ Recursive rules extend relational algebra --- have been used to add recursion to SQL-99.

A Logical Rule
◆ Our first example of a rule uses the relations:
 • Frequents(customer,rest),
 • Likes(customer,soda), and
 • Sells(rest,soda,price).
◆ The rule is a query asking for “happy” customers --- those that frequent a rest that serves a soda that they like.

Anatomy of a Rule
Happy(d) <- Frequents(d,rest) AND Likes(d,soda) AND Sells(rest,soda,p)

Anatomy of a Rule
◆ An atom is a predicate, or relation name with variables or constants as arguments.
◆ The head is an atom; the body is the AND of one or more atoms.
◆ Convention: Predicates begin with a capital, variables begin with lower-case.
Example: Atom

\[Sells(\text{rest}, \text{soda}, p) \]

Interpreting Rules

- A variable appearing in the head is called **distinguished**;
- otherwise it is **nondistinguished**.

Example: Interpretation

\[\text{Happy}(d) \leftarrow \text{Frequents}(d, \text{rest}) \text{ AND } \text{Likes}(d, \text{soda}) \text{ AND } Sells(\text{rest}, \text{soda}, p) \]

Interpretation: customer \(d \) is happy if there exist a rest, a soda, and a price \(p \) such that \(d \) frequents the rest, likes the soda, and the rest sells the soda at price \(p \).
Arithmetic sub-goals

In addition to relations as predicates, a predicate for a sub-goal of the body can be an arithmetic comparison.

- We write such sub-goals in the usual way, e.g.: \(x < y \).

Example: Arithmetic

A soda is “cheap” if there are at least two rests that sell it for under $1.

Figure out a rule that would determine whether a soda is cheap or not.

Example: Arithmetic

Cheap(soda) <-
Sells(rest1,soda,p1) AND
Sells(rest2,soda,p2) AND
p1 < 1.00 AND
p2 < 1.00 AND
rest1 <> rest2

Negated sub-goals

We may put “NOT” in front of a sub-goal, to negate its meaning.

Example: Negated sub-goals

S(x,y) says the graph is not transitive from \(x \) to \(y \); i.e., there is a path of length 2 from \(x \) to \(y \), but no arc from \(x \) to \(y \).

\[S(x,y) \leftarrow \text{Arc}(x,z) \land \text{Arc}(z,y) \land \neg \text{Arc}(x,y) \]

Algorithms for Applying Rules

Two approaches:

1. Variable-based: Consider all possible assignments to the variables of the body. If the assignment makes the body true, add that tuple for the head to the result.
2. Tuple-based: Consider all assignments of tuples from the non-negated, relational sub-goals. If the body becomes true, add the head’s tuple to the result.
Example: Variable-Based --- 1

\[
S(x,y) \leftarrow \text{Arc}(x,z) \text{ AND Arc}(z,y) \text{ AND NOT Arc}(x,y)
\]

- Arc(1,2) and Arc(2,3) are the only tuples in the Arc relation.
- Only assignments to make the first sub-goal Arc(x,z) true are:
 1. \(x = 1; z = 2 \)
 2. \(x = 2; z = 3 \)

Example: Variable-Based; \(x=1, z=2 \)

\[
S(x,y) \leftarrow \text{Arc}(x,z) \text{ AND Arc}(z,y) \text{ AND NOT Arc}(x,y)
\]

\[
\begin{array}{ccc}
 1 & 1 & 2 \\
 2 & 3 & 1 \\
\end{array}
\]

3 is the only value of \(y \) that makes all three sub-goals true.

Makes \(S(1,3) \) a tuple of the answer

Example: Variable-Based; \(x=1, z=2 \)

\[
S(x,y) \leftarrow \text{Arc}(x,z) \text{ AND Arc}(z,y) \text{ AND NOT Arc}(x,y)
\]

\[
\begin{array}{ccc}
 2 & 2 & 3 \\
 3 & 3 & 2 \\
\end{array}
\]

No value of \(y \) makes Arc(3,z) true.

Thus, no contribution to the head tuples; \(S = \{(1,3)\} \)

Example: Variable-Based; \(x=2, z=3 \)

\[
S(x,y) \leftarrow \text{Arc}(x,z) \text{ AND Arc}(z,y) \text{ AND NOT Arc}(x,y)
\]

\[
\begin{array}{ccc}
 2 & 2 & 3 \\
 3 & 3 & 2 \\
\end{array}
\]

No value of \(y \)

Tuple-Based Assignment

- Start with the non-negated, relational sub-goals only.
- Consider all assignments of tuples to these sub-goals.
 * Choose tuples only from the corresponding relations.
- If the assigned tuples give a consistent value to all variables and make the other sub-goals true, add the head tuple to the result.
Example: Tuple-Based

\[S(x,y) \leftarrow \text{Arc}(x,z) \land \text{Arc}(z,y) \land \neg \text{Arc}(x,y) \]

- Only possible values \(\text{Arc}(1,2), \text{Arc}(2,3) \)
- Four possible assignments to first two subgoals:

<table>
<thead>
<tr>
<th>Arc(x,z)</th>
<th>Arc(z,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>(1,2)</td>
<td>(2,3)</td>
</tr>
<tr>
<td>(2,3)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>(2,3)</td>
<td>(2,3)</td>
</tr>
</tbody>
</table>

Only assignment with consistent \(z \)-value. Since it also makes \(\neg \text{Arc}(x,y) \) true, add \(S(1,3) \) to result.

These two rows are invalid since \(z \) can’t be \((1 \text{ and } 3)\) or \((3 \text{ and } 2)\) simultaneously.

Datalog Programs

- A **Datalog program** is a collection of rules.
- In a program, predicates can be either
 1. EDB = *Extensional Database*
 - stored table.
 2. IDB = *Intensional Database*
 - relation defined by rules.
- Never both! No EDB in heads.

Evaluating Datalog Programs

- As long as there is no recursion,
 - we can pick an order to evaluate the IDB predicates,
 - so that all the predicates in the body of its rules have already been evaluated.
- If an IDB predicate has more than one rule,
 - each rule contributes tuples to its relation.

Example: Datalog Program

- Using following EDB find all the manufacturers of sodas Joe doesn’t sell:
 - \(\text{Sells}(\text{rest, soda, price}) \) and
 - \(\text{sodas(name, manf)} \).

\[
\text{JoeSells}(b) \leftarrow \text{Sells}('\text{Joe’s rest}', b, p) \\
\text{Answer}(m) \leftarrow \text{Sodas}(b,m) \\
\quad \text{AND NOT JoeSells}(b)
\]

Expressive Power of Datalog

- Without recursion,
 - Datalog can express all and only the queries of core relational algebra.
 - The same as SQL select-from-where, without aggregation and grouping.
Expressive Power of Datalog

- But with recursion,
 - Datalog can express more than these languages.
 - Yet still not Turing-complete.

Recursive Example: Generalized Cousins

- EDB: Parent(c,p) = p is a parent of c.
- Generalized cousins: people with common ancestors one or more generations back.
- Note: We are all cousins according to this definition.

Recursive Example

Sibling(x,y) <- Parent(x,p)
 AND Parent(y,p)
 AND x<>y

Cousin(x,y) <- Sibling(x,y)

Cousin(x,y) <- Parent(x,xParent)
 AND Parent(y,yParent)
 AND Cousin(xParent,yParent)

Definition of Recursion

- Form a dependency graph whose nodes = IDB predicates.
- Arc X -> Y if and only if
 - there is a rule with X in the head and Y in the body.
- Cycle = recursion;
- No cycle = no recursion.

Example: Dependency Graphs

Evaluating Recursive Rules

- The following works when there is no negation:
 1. Start by assuming all IDB relations are empty.
 2. Repeatedly evaluate the rules using the EDB and the previous IDB, to get a new IDB.
 3. End when no change to IDB.
The “Naïve” Evaluation Algorithm

Start:
IDB = ∅

Apply rules
to IDB, EDB

yes

no

Change
to IDB?

yes

no
done

Example: Evaluation of Cousin

◆Remember the rules:
Sibling(x,y) <- Parent(x,p) AND Parent(y,p) AND x<>y
Cousin(x,y) <- Sibling(x,y)
Cousin(x,y) <- Parent(x,xParent) AND Parent(y,yParent) AND Cousin(xParent,yParent)

Semi-naive Evaluation

◆Since the EDB never changes,
• on each round we only get new IDB tuples if we use at least one IDB tuple that was obtained on the previous round.
◆Saves work: lets us avoid rediscovering most known facts.
• A fact could still be derived in a second way.

Example: Evaluation of Cousin

◆We’ll proceed in rounds to infer
• Sibling facts (red)
• and Cousin facts (green).

Parent Data: Parent Above Child

Exercise:
1. List some of the parent-child relationships.
2. What is contained in the Sibling and Cousin data?

Parent Data: Parent Above Child

Exercise:
1. What do you expect after first round?
Round 1

Sibling and Cousin are presumed empty.
Sibling remains empty since it depends on Sibling and Cousin which is empty.
Exercise: What do you expect in the next round?

Round 2

Sibling facts remain unchanged because Sibling is not recursive.
First execution of the Cousin rule "duplicates" the Sibling facts as Cousin facts (shown in green).
Exercise: What do you expect in the next round?

Round 3

The execution of the non-recursive Cousin rule gives us nothing.
However, the recursive call gives us several pairs (shown in bold green).
Exercise: What do you expect in the next round?

Round 4

The execution of the non-recursive Cousin rule still gives us nothing.
However, the recursive call gives us several pairs (shown in even bold green).
Exercise: What do you expect in the next round?

Done!

Recursion Plus Negation

- "Naïve" and "Semi-Naïve" evaluation doesn't work when there are negated sub-goals.
 - Discovering IDB tuples on one route can decrease the IDB tuples on the next route.
 - Losing IDB tuples on one route can yield more tuples on the next route.
Recursion Plus Negation

♦ In fact, negation wrapped in a recursion makes no sense in general.
♦ Even when recursion and negation are separate, we can have ambiguity about the correct IDB relations.

Problematic Recursive Negation

\[P(x) \leftarrow Q(x) \text{ AND NOT } P(x) \]

EDB: Q(1), Q(2)

Initial: \(P = \{ \} \) // From Q(1) & Q(2)
Round 1: \(P = \{(1), (2)\} \) // From NOT(P(1)) & NOT(P(2))
Round 2: \(P = \{ \} \) // From NOT(P(1)) & NOT(P(2))
Round 3: \(P = \{(1), (2)\} \) // From Q(1) & Q(2)
Round n: etc., etc. …

Stratified Negation

♦ Stratification is a constraint usually placed on Datalog with recursion and negation.
 ♦ It rules out negation wrapped inside recursion.
 ♦ Gives the sensible IDB relations when negation and recursion are separate.

Why Stratified Negation?

♦ Usually require that Negation be stratified to prevent the problem just described. Stratification does two things:
 ♦ Lets us evaluate the IDB predicates in a way that it converges.
 ♦ Lets us discover the “correct” solution in face of “many solutions.”

Safe Rules

♦ A rule is safe if:
 1. Each distinguished variable,
 2. Each variable in a negated sub-goal,
 3. Each variable in an arithmetic sub-goal, also appears in
 * a non-negated, relational sub-goal.
♦ We allow only safe rules.

Example: Unsafe Rules

♦ Each of the following is unsafe and not allowed:
 1. \(S(x) \leftarrow R(y) \)
 ♦ Because \(x \) appears as distinguished variable (\(S(x) \)) but does not appear in a non-negated sub-goal.
 2. \(S(x) \leftarrow R(y) \text{ AND NOT } R(x) \)
 ♦ Because \(x \) appears in negated sub-goal (\(R(x) \)) but does not appear in a sub-goal.
 3. \(S(x) \leftarrow R(y) \text{ AND } x < y \)
 ♦ Because \(x \) appears in an arithmetic sub-goal (\(R(x) \)) but does not appear in a non-negated sub-goal.
Example: Unsafe Rules

◆ In each case, an infinite number of values for x can satisfy the rule, even if R is a finite relation.

Strata

◆ Stratum:
 * Let us separate good negative recursive negation from bad.
 * Intuitively, the stratum of an IDB predicate P is:
 * the maximum number of negations that can be applied to an IDB predicate used in evaluating P.

Strata

◆ Stratified negation = “finite strata.”
◆ Notice in P(x) <- Q(x) AND NOT P(x),
 * we can negate P an infinite number of times deriving P(x).

Stratum Graph

◆ To formalize strata use the stratum graph:
 * Nodes = IDB predicates.
 * Arc A -> B if predicate A depends on B.
 * Label this arc “~” if the B sub-goal is negated.

Stratified Negation Definition

◆ The stratum of a node (predicate) is:
 * the maximum number of “~” arcs on a path leading from that node.
◆ A Datalog program is stratified
 * if all its IDB predicates have finite strata.

Example

P(x) <- Q(x) AND NOT P(x)

Infinite path due to loop: not stratified!
Another Example

Setting is graph: Nodes designated as source and target.
EDB consists of:
- Source in Source(x)
- Target in Target(x)
- Arcs between nodes in Arc(x,y)

Our problem is to find target nodes that are not reached from any source.

Rules: "targets not reached from any source":
Reach(x) <- Source(x)
Reach(x) <- Reach(y) AND Arc(y,x)
NoReach(x) <- Target(x) AND NOT Reach(x)

First 2 rules recursively define Reach:
- A node can be reached if it is a source or can be reached from a node connected to source.
- NoReach if it is a target that cannot be reached.

The Stratum Graph

Stratum 1:
<= 1 "–" arc on any path out.

Stratum 0:
No "–" arcs on any path out.

Since all strata are finite, this is an example of stratified negation.

Models

To discuss possible results
- Concept imported from Logic to Datalog
- Discussion is limited to Datalog application.
- A model is a choice of IDB relations that, with the given EDB relations makes
 - all rules true regardless of what values are substituted for the variables.

Remember: a rule is true whenever its body is false.
- If moon were made of blue cheese, you will all flunk.

However, if the body is true, then the head must be true as well.
- If professor is human, you will get fair grades.

Minimal Models

A model should be minimal that if should not properly contain any other model
Intuitively, we don’t want to assert facts that do not have to be asserted
Minimal Models

- When there is no negation, a Datalog program has a unique minimal model
 - One given by naïve and semi-naïve evaluation
- With negation and recursion, there can be several minimal models
 - even if the program is stratified.
- Fortunately, we can compute the minimal model that makes sense
 - And that is the stratified model

The Stratified Model

- When the Datalog program is stratified:
 - We evaluate IDB predicates in stratum 0
 - There can be several predicates in stratum but they can’t depend negatively on themselves on any other IDB predicate strata.
 - Once evaluated, treat it as EDB for next strata.
 - Proceed iteratively until all IDB predicates are evaluated

Example: Multiple Models --- 1

Reach(x) <- Source(x)
Reach(x) <- Reach(y) AND Arc(y,x)
NoReach(x) <- Target(x) AND NOT Reach(x)

Stratum 0: Reach(1), Reach(2)
Stratum 1: NoReach(3)

1 is the only source; 2 and 3 are targets; 4 is an additional node.
Reach is fixed at 1 and 2. Since 1 and 2 can be reached, NoReach has one element in the set: 3.

Example: Multiple Models --- 2

Reach(x) <- Source(x)
Reach(x) <- Reach(y) AND Arc(y,x)
NoReach(x) <- Target(x) AND NOT Reach(x)

Another model: Reach(1), Reach(2), Reach(3), Reach(4); NoReach is empty.

SQL-99 Recursion

- Excellent example of Theory -> Practice
- Datalog recursion inspired the addition of recursion to the SQL-99 standard.
- Trickier, because SQL allows
 - grouping-and-aggregation, which behaves like negation and requires a more complex notion of stratification.
Example: SQL Recursion --- 1

- Find Sally’s cousins, using SQL like the recursive Datalog example.
- Parent(child, parent) is the EDB.

WITH Sibling(x, y) AS
(SELECT p1.child, p2.child
FROM Parent p1, Parent p2
WHERE p1.parent = p2.parent AND p1.child <> p2.child)

Example: SQL Recursion --- 2

WITH ...
RECURSIVE Cousin(x, y) AS
(SELECT * FROM Sibling)
UNION
(SELECT p1.child, p2.child
FROM Parent p1, Parent p2, Cousin
WHERE p1.parent = Cousin.x AND p2.parent = Cousin.y)

Example: SQL Recursion --- 3

- With those definitions, we can add the query, which is about the “temporary view” Cousin(x, y):

SELECT y
FROM Cousin
WHERE x = ‘Sally’;

Plan to Explain Legal SQL Recursion

1. Define “monotone,” a generalization of “stratified.”
2. Generalize stratum graph to apply to SQL.
3. Define proper SQL recursions in terms of the stratum graph.

Monotonicity

- If relation \(P \) is a function of relation \(Q \) (and perhaps other relations), we say \(P \) is monotone in \(Q \) if inserting tuples into \(Q \) cannot cause any tuple to be deleted from \(P \).
- Examples:
 \(* \ P = Q \ \text{UNION} \ R \).
 \(* \ P = \text{SELECT}_{p=16}(Q) \).
Example: Nonmonotonicity

If Sells(rest, soda, price) is our usual relation, then the result of the query:
SELECT AVG(price)
FROM Sells
WHERE rest = 'Joe''s Rest';
is not monotone in Sells.
Inserting a Joe's-Rest tuple into Sells usually changes the average price and thus deletes the old average price.

SQL Stratum Graph --- 2

Nodes =
1. IDB relations declared in WITH clause.
2. Subqueries in the body of the “rules.”
 + Includes subqueries at any level of nesting.

Arcs $P \rightarrow Q$:
1. P is a relation in the FROM list (not of a subquery).
2. P is a relation in the body of the subquery.
3. P is a subquery, and Q is a relation in its FROM or an immediate subquery (like 1 and 2).
 + Put “-” on an arc if P is not monotone in Q.
 + Stratified SQL = finite #’s of ‘-’s on paths.

Example: Stratum Graph

In our Cousin example, the structure of the rules was:

```
Sib = ...
Cousin = ( ... FROM Sib )
UNION
( ... FROM Cousin )
```

Subquery S1
Subquery S2

No “-” at all, so surely stratified.

Nonmonotone Example

Change the UNION in the Cousin example to EXCEPT:

```
Sib = ...
Cousin = ( ... FROM Sib )
EXCEPT
( ... FROM Cousin )
```

Can delete a tuple from Cousin
Inserting a tuple into S2
The Graph

Sib

Cousin

S1

S2

An infinite number of ‘-’s exist on cycles involving Cousin and S2.

NOT Doesn’t Mean Nonmonotone

◆ Not every NOT means the query is nonmonotone.
 * We need to consider each case separately.
◆ Example: Negating a condition in a WHERE clause just changes the selection condition.
 * But all selections are monotone.

Example: Revised Cousin

RECURSIVE Cousin AS
(SELECT * FROM Sib)
UNION
(SELECT p1.child, p2.child
FROM Par p1, Par p2, Cousin
WHERE p1.parent = Cousin.x AND
 p2.parent = Cousin.y)

S2 Still Monotone in Cousin

◆ Intuitively, adding a tuple to Cousin cannot delete from S2.
◆ All former tuples in Cousin can still work with Par tuples to form S2 tuples.
◆ In addition, the new Cousin tuple might even join with Par tuples to add to S2.