Functional Dependencies, Normalization

Rose-Hulman Institute of Technology
Curt Clifton
Or…
Fixing Broken Database Designs

This material will almost certainly appear on Exam II next week.
Outline

- Functional Dependencies
- Keys Revisited
- Redundancy and Anomalies
- Normalization
Functional Dependencies (FD)

- Let X be a set of attributes of a relation R
- Let A be a single attribute of R
- X → A holds for R if:
 - whenever two tuples of R agree on all the attributes of X,
 - then they must also agree on the attribute A.
- We say X “uniquely determines” A in R
Example

- Customer(Name, Addr, SodaLiked, Manf, FavSoda), with name identifying a unique person
- Lots of redundancy here…

<table>
<thead>
<tr>
<th>Name</th>
<th>Addr</th>
<th>SodaLiked</th>
<th>Manf</th>
<th>FavSoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Sprite</td>
<td>CocaCola</td>
<td>Coke</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
</tbody>
</table>
FDs from Data

- Does Name \rightarrow Addr?

<table>
<thead>
<tr>
<th>Name</th>
<th>Addr</th>
<th>SodaLiked</th>
<th>Manf</th>
<th>FavSoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Sprite</td>
<td>CocaCola</td>
<td>Coke</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
</tbody>
</table>
FDs from Data

- Does Name \rightarrow Addr?
- Yes, since we assumed unique names

<table>
<thead>
<tr>
<th>Name</th>
<th>Addr</th>
<th>SodaLiked</th>
<th>Manf</th>
<th>FavSoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Sprite</td>
<td>CocaCola</td>
<td>Coke</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
</tbody>
</table>
FDs from Data

- Does Name → FavSoda?

<table>
<thead>
<tr>
<th>Name</th>
<th>Addr</th>
<th>SodaLiked</th>
<th>Manf</th>
<th>FavSoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Sprite</td>
<td>CocaCola</td>
<td>Coke</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
</tbody>
</table>
FDs from Data

- Does Name → FavSoda?
- Yes, we want just one favorite per person

<table>
<thead>
<tr>
<th>Name</th>
<th>Addr</th>
<th>SodaLiked</th>
<th>Manf</th>
<th>FavSoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Sprite</td>
<td>CocaCola</td>
<td>Coke</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
</tbody>
</table>
FDs from Data

- Does SodaLiked → Manf?

<table>
<thead>
<tr>
<th>Name</th>
<th>Addr</th>
<th>SodaLiked</th>
<th>Manf</th>
<th>FavSoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Sprite</td>
<td>CocaCola</td>
<td>Coke</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
</tbody>
</table>
FDs from Data

- Does SodaLiked → Manf?
- Yes, since each soda has just one manf.

<table>
<thead>
<tr>
<th>Name</th>
<th>Addr</th>
<th>SodaLikedList</th>
<th>Manf</th>
<th>FavSoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Sprite</td>
<td>CocaCola</td>
<td>Coke</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
</tbody>
</table>
FDs from Data

- Does FavSoda → Name?

<table>
<thead>
<tr>
<th>Name</th>
<th>Addr</th>
<th>SodaLiked</th>
<th>Manf</th>
<th>FavSoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Sprite</td>
<td>CocaCola</td>
<td>Coke</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
</tbody>
</table>
FDs from Data

- Does FavSoda → Name?
- No, two people might have the same favorite

<table>
<thead>
<tr>
<th>Name</th>
<th>Addr</th>
<th>SodaLiked</th>
<th>Manf</th>
<th>FavSoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Sprite</td>
<td>CocaCola</td>
<td>Coke</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
</tbody>
</table>
FDs from ER Diagrams

- From entity sets
 - (Key of entity set) → other attributes of entity set
- From many-one relationship
 - (Key of “many” set) → attributes of “one” set
Drawing FDs

- Use arrows to indicate FDs on schemas:

```
Customer(Name, Addr, SodaLiked, Manf, FavSoda)
```

[Diagram showing arrows pointing to the right from the attributes Name, Addr, and SodaLiked to the next attributes Manf and FavSoda.]
Notation Shorthand

- Technically FDs go from sets to single attributes
 - \{ Name \} → Addr
 - \{ Name \} → FavSoda

- Often just combine to write:
 - Name → Addr, FavSoda

- Usually omit set braces on left side also:
 - Restaurant, Soda → Price
Keys Revisited

- Let K be a set of attributes of a relation R

- K is a super key for R if:
 - For all attributes A in R, $K \rightarrow A$

- K is a key for R if:
 - No proper subset of K is a super key for R

- An attribute B is a prime attribute of R if:
 - B is an element of some key of R
Example

- What is the key here?
- What are the prime attributes?

Customer(Name, Addr, SodaLiked, Manf, FavSoda)
Two Ways to Find Keys

- Guess a superkey K:
 - Show that $K \rightarrow A$ for all attributes A
 - Show that no subset of K is a superkey

- Find all functional dependencies
 - Check all possible keys
Why Talk About FDs?

- Let us formally identify redundancy
- Tell us how to fix it!
Redundancy Leads to Anomalies

- *Update anomaly*: one occurrence of a fact is changed, but not all occurrences
- *Deletion anomaly*: valid fact is lost when a tuple is deleted
Example

<table>
<thead>
<tr>
<th>Name</th>
<th>Addr</th>
<th>SodaLiked</th>
<th>Manf</th>
<th>FavSoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Sprite</td>
<td>CocaCola</td>
<td>Coke</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Pepsi</td>
<td>PepsiCo</td>
<td>Coke</td>
</tr>
</tbody>
</table>

Redundant with first row since Name → Addr, FavSoda

Redundant with first row since SodaLiked → Manf
Normalization

- Using functional dependencies to eliminate redundancy
- An extremely powerful technique
Third Normal Form

- A relation R is in *Third Normal Form* (3NF) if whenever $X \rightarrow A$ is a nontrivial functional dependency that holds in R, then either:
 - X is a superkey for R, or
 - A is a prime attribute of R
Normalization Algorithm

To normalize a relation R:

- Find the functional dependencies for R
- Check that whether each FD satisfies 3NF
 - If so, we’re done and R is normalized
 - Otherwise let $X \rightarrow A$ be an FD that violates 3NF
 - Find the closure of X in R, denoted X^+
 - Split R into new relations ($R - X^+ + X$) and X^+
- Repeat algorithm for each new relation
Example: Grades Relation

- Grade(Term, Yr, C#, Sec#, IName, SName, SAddr, S#, SSSN, Gr)
Step 1: Find the FDs
Step 2: Check for 3NF Violations

- A relation R is in Third Normal Form (3NF) if whenever $X \rightarrow A$ is a nontrivial functional dependency that holds in R, then either:
 - X is a superkey for R, or
 - A is a prime attribute of R
Step 3: Pick a Violating FD, Find Closure

- For \(X \rightarrow A \) the closure of \(X \), denoted \(X^+ \), is:
 - The set of all attributes that can be reached from any subset of \(X \) by following any FDs
- Or, just follow the arrows
Step 4: Split R into Two Relations

$R - X^+$

X

$X^+ - X$

R_1

R_2

R
Repeat for the New Relations

- Find FDs
- Check for 3NF violations
- ...

...