Problem 3.1 (new)
It is desired to have the package shown deposited on the horizontal surface with a speed of 1.5 m/s. Knowing that \(r = 0.3 \) m, (a) determine the required initial speed \(v_0 \) when the first loop is used, (b) show that this requirement cannot be fulfilled by the second loop, (c) determine the smallest \(v_0 \) so that the package will be deposited on the horizontal surface when the second loop is used.

![First Loop](image1)

![Second Loop](image2)

Problem 3.3 (3.7 in the text)
A small block slides at a speed \(v = 8 \) ft/s on a horizontal surface at a height \(h = 3 \) ft above the ground. Determine a) the angle \(\theta \) at which it will leave the cylindrical surface \(BCD \) and b) the distance \(x \) at which it will hit the ground. Neglect friction and air resistance.

Problem 3.3 (new)
A 3-lb collar is attached to a spring and slides without friction along a circular rod in a horizontal plane. The spring has an undeformed length of 6 in. and a constant \(k = 1.5 \) lb/in. Knowing that the collar is in equilibrium at \(A \) and is given a slight push to get it moving, determine the velocity of the collar (a) as it passes through \(B \), (b) as it passes through \(C \), (c) the normal force between the rod and the collar at \(C \).