Similarly for reflected wave

\[V^-(z) = \Gamma_L V^+(z) = \frac{\Gamma_L V_0}{1 - \Gamma_L^2 e^{-j 2\beta_0}} e^{j\beta z} \]

Reflection Coefficient

\[\Gamma(z) = \frac{V^-(z)}{V^+(z)} = \Gamma_L e^{-j 2\beta z} \]

Phasor Additions

Voltage varies along line

Figure 15 - Standing Wave Plots for Various Loads.

<table>
<thead>
<tr>
<th>(Z_L)</th>
<th>Open</th>
<th>Short</th>
<th>((0.6+j0.8)Z_C)</th>
<th>((0.92-j0.39)Z_C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma_L)</td>
<td>+1</td>
<td>-1</td>
<td>0.5(\angle \pi/2)</td>
<td>0.2(\angle -\pi/2)</td>
</tr>
<tr>
<td>VSWR</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>((d-z)_{MAX})</td>
<td>0+(n\lambda/2)</td>
<td>(\lambda/4+n\lambda/2)</td>
<td>(\lambda/8+n\lambda/2)</td>
<td>3(\lambda/8+n\lambda/2)</td>
</tr>
<tr>
<td>((d-z)_{MIN})</td>
<td>(\lambda/4+n\lambda/2)</td>
<td>0+(n\lambda/2)</td>
<td>3(\lambda/8+n\lambda/2)</td>
<td>(\lambda/8+n\lambda/2)</td>
</tr>
</tbody>
</table>

Table 1 - Summary of Standing Wave Plots of Figure 53.
Figure 14 - Variation of Incident and Reflected Phasors with Distance.

\[
Z(z) = \frac{V(z)}{I(z)} = \frac{V^+(z) + V^-(z)}{I^+(z) + I^-(z)}
\]

\[
= \frac{V_o^+ (e^{-j\beta z} + \Gamma_L e^{-j\beta (d-z)})}{Z_c} \frac{V_o^+ (e^{-j\beta z} - \Gamma_L e^{-j\beta (2d-z)})}{Z_c}
\]

\[
= Z_c \left[\frac{e^{j\beta (d-z)} + \Gamma_L e^{-j\beta (d-z)}}{e^{j\beta (d-z)} - \Gamma_L e^{-j\beta (d-z)}} \right]
\]
\[Z_{\text{IN}}(d) = Z_c \frac{Z_L + jZ_c \tan \beta d}{Z_c + jZ_L \tan \beta d} \]

\[Z_{\text{IN \, MATCH}} = Z_c \]

\[Z_{\text{IN}} \left(\frac{nL}{2} \right) = Z_L \]

\[Z_{\text{IN}} \left(\frac{(2n-1)L}{4} \right) = \frac{Z_c}{Z_L} \]

\[Z_{\text{IN \, SC}} = jZ_c \tan \beta d \]

\[Z_{\text{IN \, OC}} = \frac{-jZ_c}{\tan \beta d} \]

Figure 16 - Input Reactance of Short-circuit and Open-circuit Lines.
\[
VSWR = \left| \frac{V_{\text{MAX}}}{V_{\text{MIN}}} \right| = \frac{1+|\Gamma_L|}{1-|\Gamma_L|}
\]

\[
VSWR_{OC} = VSWR_{SC} = \infty
\]

\[
VSWR_{\text{MATCH}} = 1 \quad \text{"FLAT" LINE}
\]

EXPERIMENT WITH PHASOR DEMO ON WEB

CRANK DIAGRAM

VARIATION OF VOLTAGE AND CURRENT PHASORS WITH POSITION ON LINE.

\[
V(d) = V_{\text{INC}} + \Gamma_L e^{-j2\beta d} V_{\text{INC}}
\]

\[
= V_{\text{INC}} (1 + \Gamma_L e^{-j2\beta d})
\]

Diagram:

- **V_L**
- **\(\Gamma_L\)**
- **\(V(d_{\text{MAX}})\)**
- **\(V(d_{\text{MIN}})\)**
- **\(2\beta d_0\)**
- **\(V_{\text{INC}} = 1 \leq 0^\circ\)**
- **\(V(d_0)\)**

a: Voltage Phasors
\[I(d) = \frac{V_{inc}}{Z_c} - \Gamma_L e^{-\jmath \varphi d} \frac{V_{inc}}{Z_c} \]
\[= \frac{V_{inc}}{Z_c} \left(1 - \Gamma_L e^{-\jmath \varphi d} \right) \]

b: Current Phasors

COMBINE THESE TWO DATA ON ONE CHART - SMITH CHART

A **REFLECTION COEFFICIENT CHART**.

\[\Gamma = \frac{Z-Z_c}{Z+Z_c} = \frac{\frac{Z}{Z_c} - 1}{\frac{Z}{Z_c} + 1} = \frac{3-1}{3+1} \]

\[Z = \frac{1+\Gamma}{1-\Gamma} \]

FORMS BASIS FOR SMITH CHART
Figure 22 - Transformations between Reflection Coefficient and Impedance Planes.

Figure 23 - Reflection Coefficient Loci for Constant Resistances.

Figure 24 - Reflection Coefficient Loci for Constant Reactances.
The Smith Chart
Texas A & M Electromagnetics and Microwave Lab
Figure 25 - The Smith Chart.

\[\Gamma'(d) = \Gamma_e e^{j2\beta d} = \Gamma_e e^{j\frac{4\pi d}{\lambda}} \]

The Γ_e is rotated in **negative** (cw) direction by $\frac{4\pi d}{\lambda}$ radians.

This rotation is on constant VSWR circle.

The normalized input impedance is read from chart.

S-parameters, HP Notes from Web