1 Determine all solutions to the congruence \(x \equiv 2 \pmod{3} \)
2 Determine all solutions to the congruence \(x \equiv 2 \pmod{7} \)
3 Determine all solutions to the congruence \(x \equiv 2 \pmod{21} \)
4 Determine all solutions to the congruence \(4x \equiv 2 \pmod{21} \)
5 Determine all solutions to the congruence \(4x \equiv 2 \pmod{7} \)

A zero divisor is a non-zero residue that divides zero. For example, 2 is a zero divisor modulo 6 because \(2 \cdot 3 \equiv 0 \pmod{6} \). (This congruence also tells us that 3 is a zero divisor modulo 6)
6 Find all zero divisors modulo 21
7 Describe all \(n \) so that zero divisors exist modulo \(n \).

The order of an residue, \(a \), modulo \(n \) is the least positive integer \(h \) so that \(a^h \equiv 1 \pmod{n} \).
8 Determine the order of 2 modulo 11.
9 For each residue, \(a \), modulo 11, determine the exponent \(g \) so that \(2^g \equiv a \pmod{11} \)
10 Determine the order of 4 modulo 11.

A primitive root modulo \(n \) is a residue \(a \) so that the order of \(a \) modulo \(n \) is \(\phi(n) \).
11 Determine all primitive roots modulo 11.
12 Determine all primitive roots modulo 55.
13 Determine \(g \) so that \(2^g \equiv 17 \pmod{55} \).