Helmholtz resonators experiment

A helmholz resonator is a volume having a ‘neck’. Any bottle with a neck is a good example, and the cavity of a guitar or violin is another example.  It turns out a Helmholtz resonator acts like a mass-spring system, with the volume acting like a spring, and the air in the neck moving back and forth, acting like a mass connected to the spring.

For an experiment on Helmholtz resonators, you need a volume with a neck, and a microphone which can fit down into the cavity of the resonator. The microphone output can go to an amplifier, but maybe can go to the input of a sound card on your laptop.
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A helmholz resonator is a volume having a ‘neck’. Any bottle with a neck is a good example, and the cavity of a guitar or violin is another example.  It turns out a Helmholtz resonator acts like a mass-spring system, with the volume acting like a spring, and the air in the neck moving back and forth, acting like a mass connected to the spring.

We do need the equation for the frequency of a mass-spring oscillation, where F = -kx = ma :


 = (k/m) = 2(f


k = the spring constant = force/length


m= mass of the spring


f = frequency in Hz.

Plausibility argument 1: it is easier to compress a large volume than a small one. A large volume is ‘mushier’ and a small volume is ‘stiffer’. So the spring constant should be inversely proportional to the volume.



k ( 1/Volume = 1/V

Plausibility argument 2: the mass of air in the neck of the resonator depends on the neck length (and the area). So



m ( neck length L,  and then



2(f = ((k/m) = constant / ((VL)

To test this out, we can vary the volume V by adding water while leaving the neck alone. Then we can try plotting 1/f2 vs the volume, and see if the plot is a straight line. For this, we would need the empty volume to find out how much volume is left when we add water. This would give a working approximation, and we could see if the plot is straight.
We could also vary the length by adding to the present length, leaving the volume alone. The additional length segments (of the same area as the neck) could just be attached with masking tape. When we plot the extra length vs 1/f2 we should get a straight line.

Extra: You might measure the resonant frequency of the cavity in a guitar. Then you might tape a piece of cardboard on it with masking tape, closing off about half the area of the opening. What do you think this should do to the mass which is oscillating in and out of the opening? What should this do to the resonant frequency of the guitar? Make a prediction about the resonant frequency with the opening partially covered. Then measure the resonant frequency, and comment on the result.

[Actually, the spring constant depends on the area as well as the volume, so the student should find the frequency goes down instead of up, as it would with less mass. The point is that there is a limitation to our simple ideas above, and a more careful treatment is required. It’s still a mass-spring system, but slightly more complicated.]
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A simple resonator has a neck and an






dx

interior volume V, as roughly sketched
          neck length L

at the right.

The oscillation is viewed as a mass-spring

system, with the mass m of air in neck oscillating

in and out, and the volume of air inside acting


V

like a spring.


For a mass-spring system (mass m, spring constant k), the angular frequency is  = (k/m). We will develop equations for m and k, and obtain an expression for . The plug of air in the neck has length L and area A. The mass of the plug is m =  LA, where  is the density of the air. We imagine the plug to be displaced a distance dx into the volume as shown in the sketch. This reduces the resonator volume V by an amount A dx, so the change in the resonator volume is dV = - A dx.

The bulk modulus B is defined by B = dp/(-dV/V), so we see that the pressure inside is slightly above atmospheric by dp = B (-dV/V) = B A dx/V.  (n. b. the ‘compressibility’( is (= 1/B).

The net force on the plug of air will be dF = - dp A (it's acting outward) = - dx  (B A2/V). Since for a spring F = - kx, we could say the force constant is k = -dF/dx = B A2/V.  And we know the mass of the plug is m =  LA.  The frequency of a mass-spring oscillator is then

 = (k/m) = [BA2/(V LA)] = (B/) (A/(VL)).
The speed of sound is1 c = (B/), so the frequency of the helmholtz resonator is


 = 2(f = c (A/(VL)).








(1)

We should note that the neck length L is the ‘effective’ length, longer than the physical length by an ‘end correction’ (L.   L = Lmeasured +  (L. The volume is also an ‘effective’ volume, being that part of the empty volume which has no appreciable kinetic energy. (There is appreciable KE in the neck area.)
In our experiment, we can change the volume V by adding known amounts of water, and measuring the resonant frequency each time.  We can also leave the volume constant and change the neck length L. If adding water, it’s best to have the water at room temperature ahead of time, so the water doesn’t change the air temperature in the resonator.
The empty volume Vo is something we can measure by filling the resonator with water, or we can find out from analysis, or both. When we change the volume V and keep the neck length constant, we can re-write (1) as


A/(VL) = (2(f/c)2,    or   V = (A/L) (c/(2())2  1/f2

Vo - (V  = (A/L) (c/(2())2  1/f2 







(2).

If we let y = (V and x = 1/f2, and C1 = (A/L) (c/(2())2  , then


y = Vo – x C1 .










(3)

Eq. (3) tells us that we can plot the volume added vs. the reciprocal of frequency squared and expect to get a straight line. When x = 0, the y-intercept will be the ‘empty’ volume. {The volume of the resonator which plays a role in its springiness is actually that volume where the air has little kinetic energy This means the volume near the neck won’t be part of the ‘empty’ volume.}
If we want to change the neck length and leave the volume constant, then we write the neck length L as


L = Lmeasured + (L,

We can re-write (1) for changing the neck length and constants volume V as:

L = Lmeasured + (L = (A/V) (c/(2())2  1/f2 ,  or


Lmeasured + (L = x C2  ,








(4)

With C2 = (A/V) (c/(2())2  and x = 1/f2 .  A plot of Lmeasured vs 1/f2 should yield a straight line, and the y-intercept when x = 0 will give2 Lmeasured  = - (L.  
The experiment is to change the volume V and measure the frequency f = /(2). From Eq. (1) we expect the quantity f2 V to be constant, since the length and area and c should stay the same.

The length L and volume V are 'effective' quantities; V is supposedly the volume where there is no appreciable kinetic energy of the air, and L is an effective length which depends on how the neck is terminated ( is the neck just the end of a pipe, or does it have a big flange on it?).

To plot f2V, we need an ‘empty’ volume Vo, then V = Vo - V = Vo – volume of water added. We could have a slider which changes the 'effective' empty volume and adjust this to try to get all the f2V values to be the same.

You could also change the neck length L, leaving everything else the same. In this case, I plot 1/f2 vs the additional length, looking for a straight line (the original length L is not well known, but the additional L's are known.

I have not tried to put a flange on the end of the neck, but one could cut out a piece of stiff cardboard and try that.

[1] For air, the bulk modulus for isothermal compression and expansion is B = P  = atmospheric pressure. For adiabatic compression/expansion the bulk modulus for air is B = (P, where ( is the ratio of heat capacity at constant pressure to that at constant volume: ( = Cp/Cv.  For air, ( = 1.4 and 

c = (((P/().  Since P/( for an ideal gas is RT/M, with M the molecular weight, c = (((RT/M). Thus c depends on the absolute temperature but not on the pressure.

[2]  The theoretical value of (L depends on the radius a of the neck, and on how the neck is terminated. If the neck is like the end of a pipe, (L ~ 0.6 a, and if the neck is terminated in a flat flange (like a circular hole in a wall) (L ~ 0.9 a. There may also be an ‘end correction’ to be applied on the inside of the resonator.

