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Department of Physics, Babeş-Bolyai University, Cluj-Napoca, RO 400084, Romania

E-mail: zneda@phys.ubbcluj.ro

Received 9 November 2011, in final form 18 January 2012
Published 17 February 2012
Online at stacks.iop.org/EJP/33/455

Abstract
Evaporation of a small glass of ethylic alcohol is studied both experimentally
and through an elementary thermal physics approach. For a cylindrical beaker
and no air flow in the room, a simple quadratic relation is found between
the evaporation time and the mass of evaporated liquid. This problem and the
obtained results offer excellent possibilities for simple student experiments
and for testing basic principles of thermal physics. As an example, we use
the obtained results for estimating the value of the Boltzmann constant from
evaporation experiments.

(Some figures may appear in colour only in the online journal)

1. Introduction

Whenever you have left a cup of water (or any other drink) in your room, have you ever
wondered about how much time it takes to completely evaporate? Assuming you have a
large room with fixed temperature, is the evaporation rate constant, increasing or decreasing
with time? These questions are far from being rocket science, and anybody with a basic
physics education might figure out the answers. Many simple kitchen science experiments
with affordable apparatuses can be made, and with a basic thermal physics knowledge, the
problem can also be theoretically investigated. A simple rule that governs the evaporation rate
of the liquid can be easily obtained both theoretically and experimentally. By fitting this curve,
some basic microscopic parameters can be calculated or, alternatively, the value of the famous
Boltzmann constant can be approximated. This paper describes an investigation for ethylic
alcohol evaporation from a cylindrical beaker. The problem offers excellent possibilities for
further student projects and for testing some basic principles in thermal physics.

Evaporation is an everyday observable phenomenon which occurs at any temperature from
a free liquid surface. At the microscopic level, it is caused by the continuous thermal motion
of liquid molecules: a fraction of molecules with kinetic energy high enough to overcome the
attraction of other molecules will escape through the liquid’s surface. These molecules are no
longer bounded to each other as they were inside the liquid; therefore, they are considered
to be in a gaseous phase and are referred to as vapours. Since predominantly the molecules
with higher energies will leave while those with lower energies remain inside the liquid,
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the liquid cools while evaporating. It might be worth mentioning here that cooling atoms to
ultra-low temperatures is a timely topic in modern physics, where one can investigate many
quantum-mechanical and quantum-statistical phenomena. These ultra-low temperatures can
be obtained either by evaporative cooling in a magnetic trap or by laser cooling and trapping
(for an introductory paper on this ‘hot’ topic, we recommend [1]).

Studying evaporation was motivated by tangible industrial and agriculture-related
problems like predicting the weather, irrigation of agricultural soil, desiccation of ponds
and lakes or drying of paint (for a review see, e.g., [2]). The phenomenon of evaporation plays
an important role in diverse fields of sciences like oceanography, meteorology, plant biology,
chemistry and physics [2, 3]. The problem was studied both experimentally and theoretically
at the beginning of the 19th century. Many investigators established empirical or thermal-
physics-motivated simple formulae for the evaporation rate from a free liquid surface both
in the presence and the absence of an air flow (forced convection) over the liquid surface.
Dalton [4, 5] was the first who gave an empirical formula for water evaporation, based on his
experimental results. He concluded that the speed of evaporation Q is proportional to the free
water surface S and the difference between the saturated vapour pressure p(T ) measured at
the temperature of the evaporating liquid water and the partial pressure of the water vapour p′

in the air in which the evaporation occurred:

Q = dm

dt
= S[p(T ) − p′]

C

p0
. (1)

We have denoted here by p0 the barometric pressure of the air in which the evaporation
occurred and C is a constant. Depending on the strength of the air flow (low, moderate or
high) above the liquid surface, different values were proposed for the value of C (see, e.g.,
[6]). Stefan [7] gave a formula which is usable for describing the evaporation speed from any
vessel:

Q = S
D

l
ln

(
p0 − p′

p0 − p(T )

)
. (2)

In the above equation, D denotes the diffusion coefficient of the liquid molecules in air and
l is the distance between the free surface of the liquid and the edge of the vessel; the other
notations are the same as in Dalton’s formula. Another empirical formula for the evaporation
of water in still air was proposed by Himus and Hinchley [8]:

Q = C′ · S
√

p(T ) − p′, (3)

where C′ is again a constant. Many other studies were published concerning the evaporation
of water from pools [9, 10]. Most of the studies agree however in the basic finding that in the
case of evaporation in still air and for p′ � p0 experiments show that Q ∝ S · (p(T ) − p′). A
detailed experimental investigation in such a sense is given in [6].

Early studies also investigated the evaporation in the presence of an air flow over the free
liquid surface [8, 11–13]. Empirical formulae were given for the evaporation speed. Most of
the studies agree that for not too high air velocity values, Q = S · (C1 + C2v)[p(T ) − p′],
where C1 and C2 are constants and v is the air velocity over the free liquid surface. Although
the results in the literature are mostly for water evaporation [14], the proposed formulae (with
other values of the constants) will work reasonably well for other one-component liquids too.

As the reference list illustrates, the problem has a quite longstanding history and was
studied mainly in the second half of the 19th century and first half of the 20th century. Despite
being an old problem, it presents interest nowadays due to its widespread applicability. In
this work, we reconsider the problem for small-size and deep cylindrical-shaped vessels,
reflecting on the time dependence of the evaporation rate. A basic thermal physics approach
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will be given, and its results will be compared with simple kitchen science experiments.
Before proceeding however to discuss our approach, it should be mentioned that a systematic
experimental investigation of this problem with a similar setup has already been made in
the work of Sparrow et al in 1983 [15]. Although the authors of this paper consider the
problem from another perspective (the effects of the geometrical parameters of the vessels on
the dimensionless mass-transfer coefficient), their careful experimental investigation has to
be acknowledged. The authors also consider and investigate the fact that owing to the latent
heat of evaporation, the surface temperature of the liquid is depressed relative to the ambient
temperature. This effect gives rise to a secondary diffusion which overpowers the oppositely
directed diffusion associated with the concentration gradient of the vapours. A more careful
theoretical analysis should also take into account this effect.

Our approach here is different. First, we propose a simplified theoretical description
neglecting the temperature gradient which builds up in the liquid and its natural convection.
Then, we test experimentally the theoretical results obtained for the evaporation speed and use
it to determine some useful thermal physics quantities from experiments.

2. A simple theoretical approach

Let us first investigate the problem theoretically. Our model is based on the assumption that
on the top of the liquid’s surface a steady flow is formed and right above the surface there
are saturated vapours. Furthermore, outside the glass the concentration of alcohol vapour is
assumed to be zero due to the large room in which the experiments are performed. In case one
would work with water instead of alcohol, the humidity of air should be taken into account
and the vapour pressure outside of the glass should be computed from the humidity of water.
A concentration gradient thus builds up, which governs the diffusion of alcohol molecules out
of the glass. In this approach, we neglect the temperature gradient that might build up in the
system due to the existence of the latent heat of evaporation and also the convective instability
that might appear due to this temperature gradient. The experimental work of Sparrow et al [15]
proved that the overall variation of the temperature within the liquid for small vessels is around
0.03–0.05 ◦C, corresponding to a temperature gradient of 1–3 ◦C m−1. Since the temperature
gradient that builds up in the case of alcohol is so small, these effects would become important
only in very thin and large surface layers of liquid. However, using instead of alcohol a more
quickly evaporating liquid like chloroform or ether, the temperature difference between the
liquid surface and the ambient temperature would largely increase and one should also account
for this in the theoretical modelling. Here, we thus consider that all parts of the system are at
the same temperature.

Let H denote the height of the glass, h(t) denote the height of the liquid surface measured
from the bottom of the glass and z denote the coordinates on the vertical axis. According to
Fick’s diffusion law

dN

dt
= −DS

dn

dz
, (4)

where N is the number of liquid molecules that escaped from the glass, S is the area of the
cylindrical shaped glass, n is the concentration and D is the diffusion constant for the involved
molecules.

Assuming the temperature to be homogeneous in the glass and the diffusion process
stationary, we take the concentration gradient within the glass as uniform:

dn

dz
� �n

�z
= n

H − h(t)
. (5)
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Figure 1. Schematic of the model.

Furthermore, we also assume that the liquid vapours behave as an ideal gas; therefore, the
equation of state for the saturated vapours has the simple form:

n = p

kT
, (6)

where p denotes the pressure of saturated vapours, T is the absolute temperature and k is the
Boltzmann constant (see figure 1). If ρ is the mass density for the liquid alcohol in the glass,
its mass m(t) can be expressed as

m(t) = ρ S h(t). (7)

With the assumptions formulated in (5)–(7), the diffusion equation (4) can be written as

dN

dT
= −DS

p

kT

ρS

ρHS − m(t)
. (8)

The above formula is in agreement with both the formula given by Dalton, (1), and the one
given by Stefan, (2), in the limit of p′ � p(T ) � p0. Now, from elementary statistical
thermodynamics [16], it is well known that the diffusion constant D can be computed as

D = 1
3V�, (9)

where V is the average velocity of the molecules in the gas in which the diffusion takes place
and � is the mean free path in this medium. From elementary statistical thermodynamics, it
is also known that their values can be calculated as

V =
√

8kT

πm0
, (10)

� = 1

n0

√
2πd2

. (11)

In the above equations, n0, m0 and d are the concentration of the molecules, their mass and
the characteristic radius for the collisions cross sections, respectively. These are again values
for the gas in which the diffusion is realized. It should be mentioned here that although our
approach is for an ideal gas approximation, where the molecules are assumed to be point like,
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in our approach, we still consider a finite cross section for their collision. Although this might
seem contradictory, this is an accepted first approximation for transport phenomena in gases,
based an the real-gas model in the limit of low densities and sufficiently high temperatures.
In this limit, one can use instead of the van der Waals equation the simple thermal equation
of states of the ideal gases. For simplicity, this gas is assumed to be pure nitrogen at p0

atmospheric pressure. Therefore,

n0 = p0

kT
. (12)

Assuming that ma is the mass of one alcohol molecule

N = m

ma
, (13)

and one can immediately rewrite (8) for the liquid alcohol’s mass variation:

dm(t)

dt
= c1

p
√

T

c2 − m(t)
. (14)

Here, c1 and c2 are constants which according to (8)–(12) are computed as

c1 = −2

3

√
k

m0
π−3/2 1

d2

1

p0
S2ρma, (15)

c2 = ρHS. (16)

A first-order differential equation (14) is obtained which describes the time evolution of the
mass of the liquid which remains in the cup. This equation can be solved analytically at
constant temperature, since in such case one can assume that the saturated vapour pressure is
also constant. Under such conditions, (14) can be written as

dm(t)

dt
= c3

1

c2 − m(t)
, (17)

where

c3 = c1 p
√

T . (18)

From (17), we learn that the reciprocal value of the evaporation speed ve is a linear function
of the mass of liquid which remained in the glass:

1

ve
= 1

c3
m(t) − c2

c3
= a · m(t) + b, (19)

with a and b being constants. Since c3 < 0 (because c1 < 0), the evaporation speed obviously
decreases during the evaporation process. The time evolution for the mass of the liquid alcohol
in the glass can be obtained after the separation of the variables in (17) and integration. After
integration, one obtains the quadratic equation

t = c2

c3
m − 1

c3

m2

2
+ K, (20)

where K is an integration constant and its value can be obtained by exploiting the initial
conditions. The m(t) function is then easily obtained by solving (20) for m:

m(t) = c2 −
√

c2
2 − (2c3t + 2K). (21)
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Figure 2. The experimental setup.

3. Experiments

The advantage of this simple problem which allows an exact solution is that it can be tested
by simple experiments.

The experimental setup is simple and quite straightforward. In order to make the
experiments quicker and safer for students, ethanol was used. Using distilled water is not
recommended, since the evaporation speed is much lower and also the humidity in the ambient
air has to be taken into account in such experiments. In principle, it is also possible to use
ether or chloroform, but these liquids are more expensive and harder to procure. Also, due to
their highly volatile nature, their surface cooling is much stronger and thus the validity of our
simple approach based on a homogeneous temperature is highly questionable.

A cylindrical beaker is filled with ethanol (98% pure) and it is placed on the plate of a
precision digital balance. The use of a cylindrical-shape cup is crucial, since the evaporation
rate depends on the liquid’s surface. Thus, a recipient with a constant section is needed. In
the experiments, we used a digital balance with precision of 1 mg. Due to the temperature
dependence of the evaporation speed, it is also important that a constant temperature is
kept in the room where the experiments are performed. In order to convince ourself that
the temperature remains fixed during the evaporation, the temperature was also precisely
monitored. If the temperature fluctuations during the measurement (which lasts from several
hours up to 1–2 weeks in the case of total evaporation) are significant, either a new measurement
has to be carried out or equation (14) has to be numerically integrated using the experimentally
measured T (t) variation.

For monitoring the temperature during evaporation, a digital thermometer of 0.1 ◦C
precision was used. In order not to perturb the weight measurements, this digital thermometer
was immersed in another glass, similar to the one on the balance’s plate, and filled to the same
level with alcohol. This second recipient was placed nearby the balance.

Since evaporation in this second glass ought to be similar to the one placed on the balance,
we assumed that their temperatures should also be similar. By preliminary experiments, we
have convinced ourselves that the temperature of the two glasses remains the same during
evaporation up to an accuracy of 0.1 ◦C, which is lower than the temperature fluctuations
in the room. In figure 3, typical temperature fluctuations of the liquid are shown during the
measurement.
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Figure 3. Typical temperature fluctuations of the sample for an acceptable measurement.
Temperature data for the measurement results are presented in figure 4. Successive values are
connected with a straight line. The precision of the digital thermometer is 0.1◦C.

The system was checked by means of an FLIR E-50 thermal camera for the temperature
gradient which could build up in the evaporating alcohol, and we found that the temperature
difference between the bottom and the surface of the liquid is lower than 0.1 ◦C; thus, the
temperature gradient is lower than 3 ◦C m−1.

Both the thermometer and the digital balance were connected by USB ports to a PC
and the measured values were recorded at each 5 s. This automatized data collection was
necessary because the alcohol’s evaporation rate at room temperature was quite slow. The
evaporation of the whole ≈60 ml alcohol lasted approximately 10 days! If water had been
used instead of ethanol, the experiment would have lasted several weeks. Finally, we placed
the whole experimental setup in a corner of the lab, where the air motion was minimal.
Experiments were performed during a holiday period, when the lab was not visited by students
or researchers.

In the experiments, the offset value of the balance was fixed with the empty glass on the
plate; therefore, the balance indicated directly the liquid alcohol’s mass. Several measurements
were made, all of them indicating for m(t) the qualitative trend shown in the inset of figure 4.
From the performed experiments, we have selected those ones where the difference between the
maximal and the minimal temperature of the liquid was less than 1 ◦C for the whole evaporation
period. A characteristic temperature variation of the liquid conforming with this criterion is
shown in figure 3. Evaporation data for this experiment are represented in figure 4. As a first
observation, it is clear that the evaporation speed is not constant during the evaporation, but in
agreement with the predicted theoretical results, it decreases.

4. Results

In order to prove our main theoretical prediction, (19), we have plotted the inverse of the
evaporation speed as a function of the amount of liquid in the glass (figure 4). For the same
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Figure 4. The inverse of the evaporation speed is plotted as a function of the mass of the liquid
ethylic alcohol in the evaporation experiment. The solid line is a linear fit to the data within the range
5–46 mg. According to equation (19), its parameters are a = 6 ·108s kg−2 and b = 3×107s kg−1,
respectively. The inset shows the directly measured time-evolution of the liquid as mass measured
by the balance.

evaporation experiment (with T ≈ const), results in such a sense are presented in the inset of
figure 4. In agreement with our theoretical predictions, we find a good linear dependence for
the decisive part of the evaporation. This linear dependence breaks down however for the last
part of the evaporation process, when less than 10% of the initial quantity of alcohol remains
in the glass. The deviation from the linear dependence at a low liquid quantity is caused mainly
by the fact that the used alcohol is only 98% pure and we are dealing thus with an aqueous
solution. Since the evaporation rate of water is much smaller then the one for alcohol, the
proportion of water in the solution constantly increases during the experiment. This dilution
becomes evident when the amounts of water and alcohol are comparable in the remaining
liquid. This leads naturally to a detectable decrease in the evaporation speed of the liquid, an
effect which is observable in figure 4. In order to eliminate such an effect a more pure alcohol
should be used; however, this is not so simple to find.

Apart from testing our prediction (19), the experiments also allow the determination of
the c2 and c3 constants. These values can be computed theoretically and they offer possibilities
for further studies. One possibility is to use this experiment for a rough estimation of the
Boltzmann constant.

5. Estimation of the Boltzmann constant

The Boltzmann constant (k) is one of the fundamental constants of physics. The first indirect
estimate for the molecular size is often considered Franklin’s oil spreading experiment [18]
interpreted by Rayleigh [19] or the work of Loschmidt [20]. These estimates lead to the
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Table 1. Values of the Boltzmann constant calculated from various measurements. Due to the
theoretically estimated ≈ 80% error, only the significant digits are given. For the krp values, the
collision diameters were estimated by the density of liquids and considering a random packing of
spherical molecules. r is the radius of the beaker and T is the average room temperature during the
evaporation.

r(m) T (K) p(Pa) ρ(kg m−3) c3(kg2 s−1 × 10−9) k(J K−1 × 10−23) krp(J K−1 × 10−23)

1 0.0328 297.0 7423 786 8.0 1 1
2 0.0328 297.0 7423 786 13.6 2 3
3 0.0190 294.5 6400 789 1.6 3 4
4 0.0190 295.5 6859 787 1.6 3 4

Avogadro number and, through this, to the Boltzmann constant. However, the first who
introduced k and gave it a value was Max Planck [21]. Many direct and indirect methods are
known to measure its value with a high precision [22–26]. Also, recently many pedagogical
experiments were proposed for estimating its value in classroom experiments using video
microscopy of Brownian motion [27], low-cost atomic force microscopy [28] or a simple
sensitive circuit to measure Johnson’s noise in a resistor [29]. Several experiments and
simulations on a two-level system were proposed by Battaglia [30].

In the following, we will show that the previously discussed simple evaporation experiment
can give a rough estimate for the value of k. We expect that our results are strongly biased by
the simplicity of the experimental setup, so we will acknowledge the reproduction of the order
of magnitude.

From equations (15) and (18), we find

k = 9

4
c2

3π
3m0d4 p2

0

S4ρ2m2
a

1

p2T
. (22)

A pedagogical determination of the Boltzmann constant should in principle use only quantities
measurable at the human scale. Unfortunately, it is not the case. Some of the quantities that
are present in equation (22) are simply measurable: T , S = πr2 (with r being the radius of
the cylindrical vessel) and p0 = 105 Pa. Knowing the value of the atomic mass unit and the
relative molecular masses, one can derive m0 = 4.649 × 10−26 kg and ma = 7.650 × 10−26

kg for the mass of the N2 molecule and ethylic alcohol (CH3CH2OH), respectively. Once the
temperature is known, the p pressure of the saturated vapours and the density of the alcohol
can be obtained from tables [32] by simple interpolation. The radius d for the collision cross
section between the alcohol molecules and the N2 molecules is estimated from the kinetic
diameter of pure gases as d = dN2 +dethanol

2 . The kinetic diameter can also be estimated from the
density of liquids (alcohol and liquid nitrogen) assuming spherical-shaped molecules and a
random close-packing of these spheres. In such an approach, one would obtain dN2 = 0.41 nm
and dethanol = 0.47 nm, leading to d = 0.44 nm. On the other hand, one can also find better
experimental estimates in the literature for the kinetic diameter of the nitrogen and ethanol:
dN2 = 0.37 nm [32] and dethanol = 0.44 nm [31]. Using these values, one would obtain instead
d = 0.41 nm. According to equation (22), k depends on d4; it is therefore extremely sensitive
to errors in d. The value of c3 can be derived from evaporation experiments plotting the value
of the evaporation time t as a function of the mass of alcohol m in the beaker. A simple
quadratic fit (see equation (20)) will give us the value of c3.

Further (and shorter time evaporation) experiments with two different beakers and
with different room temperatures were performed. The results obtained for the value of
the Boltzmann constant are summarized in table 1. From these results, it is clear that by
using the kinetic diameter values from the literature, we obtain a better approximation
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for k than the values estimated from the density of the liquids. Although the spread of
the data is quite strong, we conclude, from the experiments, values for the Boltzmann
constant of k = 1–3 × 10−23J K−1, which is a reasonable approximation of the accepted
k = 1.380 65 × 10−23J K−1 value, taking into account the simplicity of our experimental
setup.
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