1
1

Waveguides and Resonant Cavities  MJM  January 3, 2006


rev Jan 9, 2007

In free space, Maxwell’s equations lead to wave equations for E and B. In a waveguide or resonant cavity, our solutions will be of the form


E(x,y,z,t) = E(x,y) exp(±ikzz – i(t), and 


B(x,y,z,t) = B(x,y) exp(±ikzz – i(t).

When these are inserted into the wave equation


((2/(x2 + (2/(y2 – kz2 +(((2 ){ E or B} = 0






(0)

These problems (waveguides and cavities) are dealt with by expressing E and B in terms of Ez and Bz, the longitudinal fields, and then enforcing the boundary conditions. 

E and B are taken to be zero inside the conducting walls, so the fields adjacent to the walls must satisify




E|| = 0     and B( = 0  at the conducting walls of the waveguide or cavity. 

From curl E = - (B/(t we have

and from    curl B = (((E/(t we have


a) 
(yEz - (zEy = i(Bx


b)
(yBz - (zBy = -i(((Ex

(1)

When we cyclically permute, we get


a) 
(zEx - (xEz = i(By


b)
(zBx - (x Bz = -i(((Ey

(2)

and


a) 
(xEy - (yEx = i( Bz


b)
(xBy - (yBx = -i(((Ez

(3)

Now we’ll solve for Ex and Ey in terms of Ez and Bz (remember, we want all transverse fields in terms of Ez and Bz)

From 1b)
-i(((Ex = (yBz -(zBy .







(4)

Then for By multiply 4) by i( and use 2a)



-(i()2(( Ex = i((y Bz -(z[(zEx - (xEz]





(5)

Since (2zEx = -kz2 Ex, (5) becomes



((((2 – kz2) Ex = i((yBz -(z(xEz






(6)

Now Eq. (6) expresses Ex in terms of derivatives of Ez and Bz, which is what we wanted.

For Ey, we start multiplying Eq (2b) by i( , then substitute for Bx from Eq 1a)



-(i()2((Ey = (z[(yEz - (zEy]-i((x Bz





(7)

And use (2zEy = -kz2 Ey to obtain from (7)



((((2 – kz2) Ey = -i((xBz -(z(yEz






(8)

Resonant frequencies of a cylindrical cavity.

We’ll start with a TE cavity mode in a cylindrical cavity of radius a and length L. TE stands for Transverse Electric, which means the E field is transverse, so Ez = 0.

Now Eqs (6) and (8) simplify to



((((2 – kz2) Ex =  i((yBz







(9)



((((2 – kz2) Ey = -i((xBz







(10)

The boundary conditions on the end faces at z = 0 and z = L are that Ex = Ey = 0, and Bz = 0.

(E|| and B( vanish). We expect a standing wave in Bz which vanishes at z = 0 and z = L, and since Bz is made up of f(x,y) [A exp(ikzz) + B exp(-ikzz)], it must be


Bz = f(x,y) C sin(n(z/L),  where n = 1, 2, etc.





(11)


This means that kz = n(/L .We must now solve for f(x,y) such that E|| vanishes at r = R. 

We may also write (11) in cylindrical coordinates, since we are solving in a cylindrical cavity

we will write B(r,(,z) as a product function:  


Bz(r,(,z) = R(r) ((() C sin(n(z/L)exp(-i(t) ,  





(12)

The idea will be to write Eq. (0) in terms of r and ( as



(1/r (/(r(r (Bz/(r) + 1/r2 (2Bz/((2  - (kz2 -(((2 ) Bz = 0




(13)

Putting (12) into (13) and then dividing by Bz 'separates' the equation


[image: image1.wmf]1/(rR) d/dr (r dR/dr) +1/(r2() d2(/d(2 +((((2 - kz2) = 0 



(14)

Multiplying by r2 gives


[image: image2.wmf]r/(R) d/dr (r dR/dr) +((((2 - kz2)r2 +1/(() d2(/d(2 = 0



(15)

The first two terms of this equation are a function of r only, and the 3rd term a function of ( only. In general, one can only satisfy this equation if each term is separately equal to a constant. We will choose the constant so that we obtain oscillating functions in (


d2(/d(2 = -m2 (, where m is an integer, so that 




(16)



((() = C1 exp(im() + C2 exp(-im(), or  ( = A sin (m() + B cos(m().

(17)

For R we multiply (15) by R and get



r2 d2R/dr2 + r dR/dr +((((2 - kz2) r2 R +m2 R = 0




(18)

When we divide by r2, and call   (2 = (((2 - kz2,    we have



d2R/dr2 + (1/r) dR/dr
+((2 -m2/r2) R = 0





(19)

Finally, when we let  x = (r, we obtain the dimensionless version of our equation



d2R/dx2 + (1/x) dR/dx
+(1 -m2/x2) R = 0





(20)

At x=0 we don't want things to blow up, so we ask that dR/dz|o = C x, with C being a constant.

At x=0 when m=0, we will set Ro at 1. When m<>0, Ro = 0.  From here we can do an RK2 integration using



d2R/dx2 = -(1/x) dR/dx -(1 -m2/x2) R 






(21)


This will give us the properties of R(r) for various m values. (These are Bessel J functions.)

Boundary condition on Bz at r = a :
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At point p, x=a and y=0. Here we need

The parallel component of E to vanish.

This means Ey(a,0) = 0.

From Eq. (10),  (xBz must vanish here.

(/(x = (r/(x (/(r + ((/(x (/((,  and since x = r cos (, and y = r sin (, r = sqrt(x2+y2), tan ( = y/x

then (r/(x = cos (, and ((/(x follows from (/(x(tan () =(1/cos2() ((/(x  = (-y/x2)  = -tan(/(r cos (), leading to ((/(x = -(1/r) sin (, so that


(/(x = cos ( (/(r –(1/r) sin ( (/((,  


So at r = a, and ( = 0, 
(xBz = (Bz/(r = 0   at r = a.        { Which we could have seen right away. }

Then we must have the radial derivative of Bz vanishing at r = a. 

Numerical integration to find the places where dB/dx = 0.

First, we will set m=0, and numerically integrate this and see where its derivative vanishes

We start at x=0, and have R=1.  Of course 1/x dR/dx must not blow up at x=0. If dR/dx = c x near zero, then 1/x dR/dx = c at x=0, and we will be ok. 

{ If m(0, then we must have R(0) = 0, otherwise the last term blows up at x=0!! }

The function R (when m = 0) has zero slope for x somewhat less than x = 4. We will take it to be at x=4 and work out the frequency of the waves in the resonant cavity when m = 0. (The function is a bessel function of order 0.)

The frequency comes from Eq. (14) 


(2 = (((2 - kz2
,

kz = (/L, and x = (r from Eq. 15.  The slope of Bz with respect to r has to vanish at r = a, and since x = 4 (really less) when the slope vanishes, we have ( = 4/a, where a is the radius of the cylinder. Then 


(2/c2 = ((/L)2 + (4/a)2 .

{ assuming the slope vanishes at x=4 ! }

Knowing L and a, one can find the frequency and wavelength of the m=0 TE mode in the cavity.

For the old microwave gear, the cavity radius is about 14.5 mm, and when the cavity is resonating, its length is about 20.6 mm.  The wavelength of the waves from this old equipment is about 3.25 cm.


TE waveguide modes (Griffiths, p. 408)
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In free space, Maxwell’s equations lead to wave equations for E and B. In a waveguide or resonant cavity, our solutions will be of the form


E(x,y,z,t) = E(x,y) exp(±ikzz – i(t), and 


B(x,y,z,t) = B(x,y) exp(±ikzz – i(t).

When these are inserted into the wave equation


((2/(x2 + (2/(y2 – kz2 +(((2 ){ E or B} = 0






(0)

These problems (waveguides and cavities) are dealt with by expressing E and B in terms of Ez and Bz, the longitudinal fields, and then enforcing the boundary conditions. 

Ez and Bz will be expressed as products in a waveguide, Ez = X(x) Y(y) exp(±ikzz – i(t). As before (Griffiths, sect 3.3, p. 129) there will be separation constants such that


kx2 + ky2 + kz2 = (2/c2 .

The boundary conditions will determine kx and ky.  kz will be determined by (, kx, and ky, and when kz is real, we have waves propagating in the waveguide. When kz is imaginary, the waves are 'cut off'. 

TE means Ez = 0. So we use that in Eqs (1) to (3) and replace (z with ikz:


a) 
- ikz Ey = i(Bx

b)
(y Bz - ikz By = -i((( Ex
(1)


a) 
ikz Ex  = i(By


b)
ikz Bx - (x Bz = -i((( Ey
(2)


a) 
(xEy - (yEx = i( Bz

b)
(xBy - (yBx = 0

(3)

We will solve for Ex, Ey, Bx, By as a function of Bz, in a slightly shortened version of Griffiths. From 1a and 2b:


i(Bx = -ikz/(-i(((){ ikz Bx - (x Bz },  or



((2/c2 - kz2) Bx = ikz (xBz .

With Bx in hand, we go back to 1a) to get Ey   Ey = -(/kz Bx



((2/c2 - kz2) Ey = -i( (xBz .

Next we use 1b) and 2a)


-i((( Ex = (yBz - ikz [kz/( Ex ] 


-i (2/c2 Ex = ( (yBz -ikz2 Ex,


Ex = i(/((2/c2 - kz2) (yBz
Ex and By depend on (yBz, and Ey and Bx depend on (xBz.

At x=0, and at x=a we need E|| and B( to vanish: Ey and Bx must vanish, thus  (xBz = 0 there.

Likewise at y=0 and y=b we must have Ex and By vanishing, or (yBz = 0 there.

Trig functions will work, which have zero slope at each spot.


Bz = A cos(kxx) cos(kyy) = A cos(n(x/a) cos(m(y/b)      ((yBz = 0 @ y=0,b;    (xBz = 0 @ x=0,a)
has zero slope at the right places, (x derivative vanishes at x = 0, x = a, y-derivative vanishes at y = 0, y=b) where n and m are integers starting with zero.

The frequency condition is


kx2 + ky2 + kz2 = (2/c2, and


kx = n(/a,  and ky = m(/b .

Solving for kz gives


kz = sqrt((2/c2 -( n(/a)2 - (m(/b)2 )

For the TE10 mode (n=1, m = 0), kz will be real and waves will propagate down the waveguide as long as (/c > (/a.  Waves will be 'cut off' and exponentially decay if (/c < (/a . 

For the waveguide we used, a = 22.8 mm, and b = 10.25 mm.  It was supporting wavelengths of 2.8 cm (new microwave gear) and 3.25 cm (ancient microwave set).

Since all waves are of the form  f(x,y) exp(ikzz - i(t), the phase of the wave is ( = kzz - (t. How fast does z have to travel to keep the phase constant?  d(/dt = 0 => dz/dt = vphase = (/kz.  The phase velocity is greater than c, because kz is less than the free-space k. The group velocity is usually written

vgroup  = d(/dk, but in this case one evidently writes vgroup = d(/dkz. From


(2/c2 = kz2 + (n(/a)2 + (m(/b)2,   so   ( d( =c2 kz dkz, and d(/dkz = c2/((/kz).


vgroup = c2/vphase   ( vgroup < c,  vphase >c)

This is a general result, I think, that the product of group and phase velocities equals c2.
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