PAGE  
3

Conducting waveguides and slab optical waveguides.    PH 317
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· The z-direction is parallel to the axis of the waveguide

· Energy in the form of electromagnetic waves is confined within the waveguide

· Assume waves with z-dependence of exp(ikzz –i(t)

· The x and y dependence is that of superposed plane waves

· These combine to form standing waves between the boundaries in x and y

· Solutions will be things like sin (kxx) cos(kyy) exp(ikzz –i(t)

· kx, ky will be determined by boundary conditions

· kz will be determined from kz = (((2/c2 – kx2 – ky2 )  (or v2 instead of c2 in glass)

· First write down all 6 components of both curl equations in free space

· Then solve for x and y components of E and B in terms of Ez and Bz or their derivatives

· Separate two distinct kinds of waves, 

· TE in which Ez is zero so E components are transverse to z

· TM in which Bz is zero, so B components are transverse to z

· For TE waves, find the form of Bz which will satisfy the boundary conditions

· For TM waves, find the form of Ez which will satisfy the boundary conditions

· This will fix the values of kx and ky
· In a slab waveguide, waves travel in the x-z plane and boundaries are at x= -a/2, +a/2

· For waves to be confined in the slab, noutside <ninside and ( >(critical
· E and B vectors outside the slab must be exponentially decreasing for the wave to be confined

· For both types of waveguides, solve separately for even and odd symmetries within TE and TM modes

Slab optical waveguide.  A slab of width a and index n1 is the waveguide, surrounded on both sides by material of index n2<n1. For modes to propagate in the slab waveguide we need to launch waves at an angle greater than the critical angle. This causes the fields in n2 to exponentially decay. We will separately solve for EVEN waveguide modes where the function of x is cos (kxx) and ODD waveguide modes where the function of x is sin(kxx)
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The net E field in n1 is 

Enet, n1,y = -Ei exp(ikxx + ikzz - i(t) - Er exp(-ikxx +ikzz -i(t),   or

Enet, n1,y = - [A cos(kxx) +B sin (kxx)] exp( ikzz -i(t).

We will tackle these one at a time:  The EVEN TE mode in the slab waveguide and the ODD TE mode in the slab waveguide. For the TM modes (Hz = 0) we must also work out both even and odd solutions.

EVEN TE mode conditions.

For the parallel component of E at the boundary we have


Ey = -A cos (kx a/2) = -Et exp(i ktx a/2) .






(1)

Snell's law says n1 sin ( = n2 sin (t. With n1 > n2, when ( is so large that sin (t >1, cos (t is pure imaginary. ktx = kt cos (t, so when ( > (critical, ktx becomes pure imaginary, so we say


ktx = i (   ( ( is real,  ( >  (critical )







(2)

The propagation vectors are  k1 = (/v1 = (/c c/v1 = n1 (/c,  and k2 = (/v2 = (/c c/v2 = n2 (/c. For the boundary conditions to be satisfied at all z along the boundary, we must have k1z = ktz, or


k1z = k1 sin ( = ktz = k2 sin (t = kt sin (t,      (this is the same thing as snell's law)

Then in n1 we have
k12 = k1x2 + kz2 =(n1(/c)2, 






(2a)

and in n2    k22 = kt2= ktx2 + kz2  = -(2 + kz2 =(n2(/c)2 .





(2b)



For matching the H field parallel components, we want Hz.  To obtain Hz we appeal to the curl of E.


(curl E)z = -( (Hz/(t  = (Ey/(x - (Ex/(y = i(( Hz   .

We apply this both inside and outside

In n1:
(then evaluated at x=a/2) 
+kx A sin(kxa/2)  = i(( Hz 

In n2:
(then evaluated at x=a/2) 
-Et i ktx exp(iktx a/2) = i(( Htz .

Setting parallel components of H (namely Hz) equal at the boundary gives

+kx A sin(kxa/2) = -Et i ktx exp(iktx a/2)  .






(3)

Dividing (3) by (1) and using (2), then multiplying both sides by a/2 we find


kx a/2 tan (kx a/2) = | ktx | a/2 =  ( a/2.







(4)

This is of the form  u tan u = q, where u = kx a/2 and  q = | ktx | a/2  = ( a/2 .

Squaring both sides and adding u2 to both sides gives


u2 tan(u)2 + u2 = (u/cos(u))2  = q2+ u2  .

Next we write out k2 on both sides of the boundary, as in Eqs (2a) and (2b)


kt2  = ktz2 + ktx2 = ktz2 + -(2 = n22 (2/c2     and 


k2  = kz2 + kx2 = n12 (2/c2    .

Because kz is the same on both sides (for constant phase along the boundary)  and (()2 = -ktx2, 


n12 (2/c2  - n22 (2/c2 = kx2 + (()2







(5)

Multiplying both sides by (a/2)2, we get


u2 + q2 = (kx2 + (2)(a/2)2 = R2,      where R2 = (a/2)2 (n12 (2/c2  - n22 (2/c2)


(6)

Now we want to solve


(u/cos(u))2  = q2+ u2 = R2,   where R2 depends only on the slab width and indices.

(7)

In particular we want solutions of


cos u = (u/R .










(8)

But because u tan u = q, we only want solutions where tan u is positive, namely the first and third quadrants (indeed, all odd quadrants). { u = k1 a/2 cos (.  q = k2 a/2 |cos (t| }

One can plot simultaneously cos u and +u/R and -u/R, then accept solutions in the odd quadrants.

Homework problems
1. Show that when u/R = 1 we are at the critical angle from n1 to n2.

2. Work out the condition for odd TE modes (analogous to cos u = u/R , odd quadrants).

3. For a slab whose thickness is 10 microns, at an omega of 1 x 1015 rad/s, and n1 = 1.5 and n2 = 1.46, determine the valid even TE solutions.  Determine the launch angle for each of these (theta in n1).  {This is readily done in Maple. Could also be done on a spreadsheet. }

