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PH 404 Acoustics -  Acoustic Wave Equation, spherical waves, etc.
Jan 07 04  b



s = condensation = fractional change in density = ((-(o)/(o     (s taken to be<<1).   Or,

(1)
s = ((-(o)/(o
(1a)
( = (o (1+s),   where  s <<1

The bulk modulus B is defined as B = -(P-Po)/(V/V . [This is the reciprocal of the compressibility.] With ( = mV, and m constant, (V/V = -((/(. Then with the equation of state we have

(2)
B= (P-Po)/[((-(o)/(o];  

The acoustic pressure p is the excess over so we find, using p = P-Po and (1) [s=(( - (o)/(o],   that

(3)
p= Bs,         ( p = acoustic pressure )

B In ideal gases.  Because PV( = constant for an adiabatic process in gases, ( ( = heat capacity at constant pressure/ heat capacity at constant volume ( = Cp/Cv ) and acoustic compressions are adiabatic,

the equation of state can be written P/Po = ((/(o)(, where P is the absolute pressure. Then  


dP = Po ( (d(/()((/(o)(   =  [Po ((/(o)( ] ( (d(/() 


and B = +dP/(d(/(o)  = P ( (d(/()//(d(/(o) ( ( P             B = ( P for an ideal gas

Conservation of mass. 

The equation of continuity states that no matter is gained or lost:


the flux of mass into a region = mass/time = (/(t (( ( dV )

Mass flux (mass/area/time) is the surface integral of  (u, where u is the acoustic velocity, a small quantity.


  mass flux = -(( (u (dA . 

The reason for the - sign is that dA points out of the volume, and a positive flux means mass is leaving the volume. The ratio of flux to volume as volume disappears is the divergence. So as the volume shrinks on the right, ( becomes constant over the tiny volume Vtiny and we have  


mass flux  = -((tiny surface ( u (dA = ((/(t Vtiny 

When we divide both sides by Vtiny we get

(4)
-div ((u) = ((/(t
[three dimensions ],    or, since ( =(o(1+s), and p = Bs,

(4a)
- div ((u) = (o (s/(t = (o/B (p/(t 

In one dimension, the mass flowing in per unit time would be  A((u|x)  The flow out would be 

-A((u|x+(x ).  The net flow per unit time would be -A (/(x((u) (x . This would have to equal the increase in mass inside per unit time: (/(t( ( A (x).  Putting the net flow in equal to the change in mass per unit time gives

(4b)
-(((u) /(x= ((/(t    [ one dimension only ]
{ Raichel 2.21 [needs a - sign] }

Since u is a small quantity, and ( contains the small quantity s, we linearize the equation of continuity by neglecting products of small quantities, keeping only 'first order' terms:  ( u = (o(1+s) u ( (ou, 



(4c)
-(o div(u) = ((/(t ,      or   using (4a) -(o div(u) = ((/(t

With (1a)  ( = (o (1+s),    ((/(t = (o (s/(t . Then using (3) p = Bs, we have

(4d)
-div u = 1/B (p/(t  .

In 1-D this is


(4e)
-(ux/(x = 1/B (p/(t .

These equations come from conservation of mass, and the definitions of s, and B.

Newton's Second Law.

In one dimension, we apply F=ma  to a small mass element of area A in a distance (x. The net force on the element would be A (p|x - p|x+(x), which must equal the change of momentum of the mass, (/(t((A(x u) giving



-(p/(x = (/(t( (o(1+s) u) ->(linearized) =  -(p/(x =  (o (u/(t        [1-D, Raichel's 2.22*  ]

In 3-d this gives (linearized)


(5)
grad p = -(o (u/(t .
[3-D  In 1-D this is Raichel's 2.22, * but needs a - sign ]

When we put (4d) and (5) together we obtain the acoustic wave equation

 div (grad p ) = (o (/(t ( div u ) = (o/B (2p/(t2  .

Div grad p is the laplacian of p or (2p .  In rectangular coordinates this is 


(2p/(x2 + (2p/(y2 + (2p/(z2 = (o/B (2p/(t2 .

With c2 = B/(o  { B = (Po/(o  = ( RT/M for an ideal gas } this is Raichel's 2.25* (he left off the M)


(2p = 1/c2 (2p/(t2 .

{Raichel's 2.25 }

From here on out ( will be taken to be (o unless otherwise stated. 

acoustic wave equation:     (2 p = (/B (2p/(t2 = 1/c2 (2p/(t2  . 

In air, the oscillations are isentropic, (or adiabatic, the two words mean the same) and the bulk modulus is B = ( Po;  B/( = (Po/(   Sound wave speeds in gases depend on temperature: c2 = (RT/M, where M is the molar mass of the gas.

In an elastic solid, B = Y/[3(1-2()].  This of course means ( < 1/2 for poisson's ratio.

--------------------------------------------------------------------------------------------------------------------

plane waves  

(6)
p = po exp (i k(r - i(t) ,  and u = uo exp (i k(r - i(t)

and from grad p = -( (u/(t we get

(7)
grad p = ikp = -((u/(t  = +i ( ( u   ,  so  u = k/((() p .

For the velocity amplitude of a plane wave we use (/k = c, and find from (6) and (7)

u = (po/(c) exp ( i k(r - i(t)    [ velocity amplitude is pressure amplitude divided by (c ]

SpecificicAcoustical impedance, z . The previous equation established for plane waves that po/uo= (c. 

The ratio of pressure to velocity is the specific acoustic impedance, z. For plane waves, the last equation showed z = (c .


z = p/u 
[ in general, this is specific acoustic impedance ]


z = (c
[ for plane waves ]


u = p/z ->  uo = po/((c)
[ for plane waves; see Raichel 3.32 ]

Power:  F(v =>  work done by one element on adjacent element per unit time is p u A;


Power = p u A;  

Intensity is power/area = I = p u.

Time averaged intensity is  ( Re stands for the real part of )


< I > = <p u>  =>  < I > = 1/2 Re (p u*)

<I> for a plane wave  = (po)2/(2(c)
Since I = energy density times velocity, and I = pu,          energy density = pu/c.

Spherical waves 


p =  A/r exp (i kr - i(t);  
[outgoing spherical wave]

this satisfies  (2 p = - k2 p in spherical polar coordinates:


(p/(r = (ik-1/r) p;   (2p/(r2 = [(ik-1/r)2 + 1/r2] p

 
(2p/(r2 + 2/r (p/(r = -k2 p;  

 
(ik - 1/r)2 +1/r2 + 2/r(ik-1/r) =? -k2 ; -k2 -2ik/r +2/r2 +2ik/r -2/r2 =  -k2  [yes it's true].

Using (5) we have


(grad p)r = (p/(r = (ik-1/r) p = -i(( u.   This means p/u = -i((/(ik-1/r)

Fishing out an ik from the bottom of the last expression and using c = (/k we get


z = p/u = (c/(1+i/(kr))
 [outgoing spherical waves, p = A/r exp(ikr-i(t)]


z = (c (1-i/(kr)/(1+1/(kr)2) = [(c/((1+1/(k2r2))] exp(i(), where 


cos ( = 1/((1+1/(k2r2))  and 
sin ( = 1/(kr)/((1+1/(k2r2))


u = A/r exp(ikr-i(t) / z

(8)
u = (A/r)/[(c/((1+1/(k2r2))] exp(i (kr - (t - ()) 

The phase p is kr-(t, and the phase of u is  kr-(t-(.   When r is fixed, the phase becomes more and more negative as t increases. Since the phase of u is more negative that that of p, we say the velocity u 'leads' the pressure p. (After a little more time, the phase of p will catch up to where the phase of u had been).

If we had started out with A/r exp(i(t - ikr) we would have wound up with 

(9)
u = (A/r)/[(c/((1+1/(k2r2))] exp(-i (kr - (t -()) .

This still means the acoustic velocity u leads the pressure.

When we are very close to a source of outgoing spherical waves, kr <<1, and cos ( is nearly 0. Then the phase angle is nearly (/2.  Notice that z is quite small when kr <<1. This means the velocity is much larger than the pressure, so near the source, we have mostly 'velocity fields'. 

When we are far from the source, kr >>1, and the pressure and velocity are very nearly in phase.

And far from the source 


z  = (c,  
[ the impedance for plane waves in free space.]

A 'simple source' is a notion invented by Helmholtz, equivalent to the 'point charge' in electricity.

It consists of a small sphere of radius a which is radially oscillating with velocity uo at r = a. Using (8) at r = a, we find

(10)
uo = (A/a)/[(c/((1+1/(k2a2))] exp(i (ka - (t -()),  and then

(11)
A = uo a (c/((1+1/(k2a2))] exp(i (ka - (t))

When ka <<1 we have wavelengths much larger than the source dimension, and (11) becomes

(11a)
A = uo (ck a2 exp(i (ka - (t))

[ ka <<1 ]

The time-averaged intensity in this spherical wave will be ('Re' stands for 'the real part of')

and * is the complex conjugate (see bottom of page)

(12)
< I > = 1/2 Re(pu*) = 1/2 |A|2/r2  Re (1/z*)  or  < I > =  1/2 uo2 Re (z*)


< I > = 1/2 |A|2/r2/[(c/((1+1/(k2r2))] Re(exp i()

For large r, kr >>1, and ( is nearly zero, so using (12a  for ( >> a ) we find 


< I > = 1/(2(c) |A|2/r2  = 1/(2(cr2) (uo (ck a2 )2  

The 'source strength' of a simple source is its volume flow rate, Q = volume/time = 4(a2 uo, so


< I > = (Q/(4(a2) a2 (ck)2/(2(cr2)

The total radiated power is the intensity multiplied by the surface area of a sphere, 4(r2 when we are far away from the simple source

(13)   Total radiated power   < P > = Q2 (ck2 /(8()       { far from a point source of strength Q,   ( >> a }

In terms of the pressure amplitude A we could also write this <P> = 2( |A|2 /((c).
=========================================================================

To show that <pu> = 1/2 Re(pu*)

f = A exp(i() exp(i(t)       g = B exp(i() exp(i(t)       q = <Re(f) Re(g) >           A, B, (, ( are all real.

q = AB < cos((t+()cos((t+() >;   

cos((t+() = cos((t)cos(() - sin((t)sin(().    cos((t+() = cos((t)cos(() - sin((t)sin(().

<cos2((t)> = 1/2 = <sin2((t)>    <sin((t)cos((t)> = 0,     so


q = 1/2 AB [ cos ( cos ( + sin( sin ( ] = 1/2 AB cos(( - () .


But q = <Re(f) Re(g) > = 1/2 Re(fg*) = 1/2 AB Re(exp(i((-()) = 1/2 AB cos(( - () .
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