Physics II
Homework VIII                                                                                                                    CJ
Chapter 27; 3, 10, 15, 22, 28, 39, 46 
	27.3. Visualize: 
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Figure 27.6 shows the electric field for an infinite plane of charge. For two parallel planes, this is the only shape of the electric field vectors that matches the symmetry of the charge distribution.

27.10. Model: The electric field is uniform over the entire surface.

Visualize: Please refer to Figure 27.10. The electric field vectors make an angle of 60( above the surface. Because the normal 
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 to the planar surface is at an angle of 90( relative to the surface, the angle between 
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is (  30(.

Solve: The electric flux is
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27.15. Model: The electric field through the two cylinders is uniform.

Visualize: Please refer to Figure Ex 27.15 . Let A  R2 be the area of the end of the cylinder and let E be the electric field strength.

Solve: (a) There’s no flux through the side walls of the cylinder because 

 is parallel to the wall. On the right end, where 

 points outward, right  EA  R2E. The field points inward on the left, so left  –EA  –R2E. Altogether, the net flux is e  0 N m2/C2.

(b) The only difference from part (a) is that 

 points outward on the left end, making left  EA  R2E. Thus the net flux through the cylinder is e  2R2E.

27.22. Visualize: Please refer to Figure Ex27.22. For any closed surface that encloses a total charge Qin, the net electric flux through the closed surface is 
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. For the closed surface of the torus, Qin includes only the (1 nC charge. So, the net flux through the torus is due to this charge:
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This is inward flux.

27.28. Model: The electric field over the five surfaces is uniform.

Visualize: Please refer to Figure P27.28.

Solve: The electric flux through a surface area 
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 where ( is the angle between the electric field and a line perpendicular to the plane of the surface. Because the electric field is perpendicular to side 1 and is parallel to sides 2, 3, and 5. Also the angle between 
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 is 60(. The electric fluxes through these five surfaces are
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Assess: Because the flux into these five faces is equal to the flux out of the five faces, the net flux is zero, as we found.

27.39. Model: The excess charge on a conductor resides on the outer surface. The charge distribution on the two spheres is assumed to have spherical symmetry.

Visualize: Please refer to Figure P27.39. The Gaussian surfaces with radii r  8 cm, 10 cm, and 17 cm match the symmetry of the charge distribution. So, 
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 is perpendicular to these Gaussian surfaces and the field strength has the same value at all points on the Gaussian surface.

Solve: (a) Gauss’s law is 
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. Applying it to a Gaussian surface of radius 8 cm, 
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Because the excess charge on a conductor resides on its outer surface and because we have a solid metal sphere inside our Gaussian surface, Qin is the charge that is located on the exterior surface of the inner sphere.

(b) In electrostatics, the electric field within a conductor is zero. Applying Gauss’s law to a Gaussian surface just inside the inside-surface of the hollow sphere at r  10 cm,
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 Qin  0 C

That is, there is no net charge. Because the inner sphere has a charge of (1.068 ( 10(8 C, the inside surface of the hollow sphere must have a charge of 1.068 ( 10(8 C. 

(c) Applying Gauss’s law to a Gaussian surface at r  17 cm,


[image: image21.wmf](

)

(

)

(

)

2

12228

in00sphere

8.8510 C/Nm15,000 N/C40.17 m4.8210 C

QEdAEA

eep

--

=×==´=´

ò

r

r

Ñ


This value includes the charge on the inner sphere, the charge on the inside surface of the hollow sphere, and the charge on the exterior surface of the hollow sphere due to polarization. Thus,
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27.46. Model: The three planes of charge are infinite planes.

	Visualize: 
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From planar symmetry the electric field can point straight toward or away from the plane. The three planes are labeled as P (top), P(, and P((bottom).

Solve: From Example 27.6, the electric field of an infinite charged plane of charge density ( is
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In region 1 the three electric fields are
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Adding the three contributions, we get
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In region 2 the three electric fields are 
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Thus, 
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In region 3,
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Thus, 
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In region 4, 
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Thus
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