Physics II
Homework III                                                                                                                   CJ
Chapter 14; 6, 16, 20, 23, 34, 44, 51, 76
14.6. Model: The oscillation is the result of simple harmonic motion. 

Visualize: Please refer to Figure Ex14.6. 

Solve: (a) The amplitude A  20 cm. 

(b) The period T  4.0 s, thus
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(c) The position of an object undergoing simple harmonic motion is 
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Because the object is moving to the right at t  0 s, it is in the lower half of the circular motion diagram and thus must have a phase constant between ( and 2( radians. Therefore, 
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14.16. Model: The mass attached to the spring is in simple harmonic motion.

Solve: (a) The period is
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(b) The angular frequency is 
[image: image7.wmf]221.0 s2 rads.

T

wppp

===


(c) To calculate the phase constant 
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Because the mass is moving to the right at t  0 s, it is in the lower half of the circular motion diagram. Hence, 
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(d) At t  0 s, 
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(e) The maximum speed 
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(g) At t  1.3 s, 
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(h) At t  1.3 s, 
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14.20. Model: The vertical oscillations constitute simple harmonic motion.

Solve: To find the oscillation frequency using 
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, we first need to find the spring constant k. In equilibrium, the weight mg of the block and the spring force k(L are equal and opposite. That is, 
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14.23. Model: Assume the small-angle approximation so there is simple harmonic motion. 

Solve: The period is 
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14.34. Visualize: Please refer to Figure P14.34. 

Solve: The position and the velocity of a particle in simple harmonic motion are 
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From the graph, T  12 s and the angular frequency is 
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(a) Because 
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(b) At t  0 s, 
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Because the velocity at t  0 s is negative and the particle is slowing down, the particle is in the second quadrant of the circular motion diagram. Thus 
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(c) At t  0 s, 
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14.44. Solve: (a) The velocity is –0.25 m/s at times that satisfy the equation


[image: image28.wmf]0.25 m/s

0.25 m/s(0.35 m/s)sin(20)sin(20)0.7143

0.35 m/s

tt

pp

-

-=-+Þ+==

-


The time is


[image: image29.wmf]1

0.7956 rad rad

20 radsin(0.7143)0.7956 rad0.117 s

20 rad/s

tt

p

p

-

-

+==Þ==-


This is a time at which v  –0.25 m/s, but it’s not a time after t  0 s. But the sine function is periodic with period 2 rad, so another angle whose sine is 0.7143 is
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This is a time t > 0 s at which v  –0.25 m/s.

(b) The amplitude is A  vmax/  (0.35 m/s)(20 rad/s)  0.0175 m  1.75 cm. Thus the position at t  0.197 s is
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14.51. Model: The compact car is in simple harmonic motion. 

Solve: (a) The mass on each spring is 
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(b) The car carrying four persons means that each spring has, on the average, an additional mass of 70 kg. That is, 
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Assess: A small frequency change from the additional mass is reasonable because frequency is inversely proportional to the square root of the mass.

14.76. Model: The two springs obey Hooke’s law. Assume massless springs.

Visualize: Each spring is shown separately. Note that (x  (x1  (x2.
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Solve: Only spring 2 touches the mass, so the net force on the mass is Fm  F2 on m. Newton’s third law tells us that F2 on m  Fm on 2 and that F2 on 1  F1 on 2. From Fnet  ma, the net force on a massless spring is zero. Thus Fw on 1  F2 on 1  k1(x1 and Fm on 2  F1 on 2  k2(x2. Combining these pieces of information, 

Fm  k1(x1  k2(x2
The net displacement of the mass is (x  (x1  (x2, so
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Turning this around, the net force on the mass is
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keff, the proportionality constant between the force on the mass and the mass’s displacement, is the effective spring constant. Thus the mass’s angular frequency of oscillation is
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Using 
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Since the actual frequency f is simply a multiple of , this same relationship holds for f:
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