Physics II
Homework II                                                                                                                   CJ
Chapter 13; 22, 27, 42, 53, 63, 78
13.22. Model: Two balls connected by a rigid, massless rod are a rigid body rotating about an axis through the center of mass. Assume that the size of the balls is small compared to 1 m.

	Visualize: 
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We placed the origin of the coordinate system on the 1.0 kg ball.

Solve: The center of mass and the moment of inertia are
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We have f  0 rad/s, tf – ti  5.0 s, and 
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 so f  i  (tf – ti) becomes
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Having found I and , we can now find the torque  that will bring the balls to a halt in 5.0 s:
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The magnitude of the torque is 0.279 N m.

13.27. Model: The object balanced on the pivot is a rigid body.

	Visualize: 
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Since the object is balanced on the pivot, it is in both translational equilibrium and rotational equilibrium.

Solve: There are three forces acting on the object: the weight 
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 acting through the center of mass of the long rod, the weight 
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 acting through the center of mass of the short rod, and the normal force 
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 on the object applied by the pivot. The translational equilibrium equation 
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Measuring torques about the left end, the equation for rotational equilibrium net  0 Nm is
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Thus, the pivot is 1.40 m from the left end.

13.42. Solve: 
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	13.53. Visualize: 
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Solve: We solve this problem by dividing the disk between radii r1 and r2 into narrow rings of mass dm. Let 
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 be the area of a ring of radius r. The mass dm in this ring is the same fraction of the total mass M as dA is of the total area A.

(a) The moment of inertia can be calculated as follows:
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Replacing r1 with r and r2 with R, the moment of inertia of the disk through its center is 
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(b) For r  0 m, 
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 This is the moment of inertia for a solid disk or cylinder about the center. Additionally, for 
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 we have I  MR2. This is the expression for the moment of inertia of a cylindrical hoop or ring about the center.

(c) The initial gravitational potential energy of the disk is transformed into kinetic energy as it rolls down. If we choose the bottom of the incline as the zero of potential energy, and use 
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 the energy conservation equation Kf  Ui is
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For a sliding particle on a frictionless surface 
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That is, vcm is 74.8% of the speed of a particle sliding down a frictionless ramp.

13.63. Model: The stars are spherical masses. They each rotate about the system’s center of mass.

	Visualize: 
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Solve: (a) The stars rotate about the system’s center of mass with the same period: T1  T2  T. We can locate the center of mass by lettering the origin be at the smaller-mass star. Then
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Mass m2 undergoes uniform circular motion with radius r2  0.5 1012 m due to the gravitational force of mass m1 at distance R  2.0 1012 m. The gravitational force is responsible for the centripetal acceleration, so
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(b) The speed of each star is v  (2r)/T. Thus
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13.78. Model: Model the turntable as a rigid disk rotating on frictionless bearings. As the blocks fall from above and stick on the turntable, the turntable slows down due to increased rotational inertia of the (turntable  blocks) system. Any torques between the turntable and the blocks are internal to the system, so angular momentum of the system is conserved. 
Visualize: The initial moment of inertia is I1 and the final moment of inertia is I2.

Solve: The initial moment of inertia is 
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 and the final 
moment of inertia is

I2  I1  2mR2  0.010 kg m2  2(0.500 kg)  (0.10 m)2  0.010 kg m2  0.010 kg m2  0.020 kg m2

Let 1 and 2 be the initial and final angular velocities. Then 
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