Physics II
Homework I                                                                                                                   CJ
Chapter 13; 4, 11, 13, 23, 55, 67, 71
13.4. Model: The angular velocity and angular acceleration graphs correspond to a rotating rigid body.

	Solve: 
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(a) The -versus-t graph has a positive slope of 5 rad/s2 from t  0 s to t  2 s and a negative slope of (5 rad/s2 from t  2 s to t  4 s.

(b) The angular velocity is the area under the -versus-t graph: 
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	13.11. Visualize: 
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Solve: Torque by a force is defined as   Frsin where  is measured counterclockwise from the 
[image: image4.wmf]r

r

 vector to the 
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 vector. The net torque on the pulley about the axle is the torque due to the 30 N force plus the torque due to the 20 N force:
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Assess: A negative torque causes a clockwise motion of the pulley.

	13.13. Visualize: 
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Solve: The net torque on the spark plug is
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That is, you must pull with a force of 175.5 N to tighten the spark plug.

Assess: The force applied on the wrench leads to its clockwise motion. That is why we have used a negative sign for the net torque.

13.23. Model: A circular plastic disk rotating on an axle through its center is a rigid body. Assume axis is perpendicular to the disk.

Solve: To determine the torque () needed to take the plastic disk from i  0 rad/s to f  1800 rpm  (1800)(2)/
60 rad/s  60 rad/s in tf – ti  4.0 s, we need to determine the angular acceleration () and the disk’s moment of inertia (I) about the axle in its center. The radius of the disk is R  10.0 cm. We have
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Thus,    I  (1.0  10(3 kg m2)(15 rad/s2)  0.0471 N m.

	13.55. Visualize: 
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Solve: We can divide the face of the square rod into small areas dA  dx dy with mass dm. Because the mass of the rod is uniformly distributed, dm is the same fraction of M as dA is of A  L2. That is
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The moment of inertia is
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13.67. Model: The pulley is a rigid rotating body. We also assume that the pulley has the mass distribution of a disk and that the string does not slip. 

	Visualize: 
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Because the pulley is not massless and frictionless, tension in the rope on both sides of the pulley is not the same. 

Solve: Applying Newton’s second law to m1, m2, and the pulley yields the three equations: 
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Noting that –a2  a1  a, 
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 and   a/R, the above equations simplify to 
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Adding these three equations, 
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We can now use kinematics to find the time taken by the 4.0 kg block to reach the floor: 
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13.71. Model: Assume that the hollow sphere is a rigid rolling body and that the sphere rolls up the incline without slipping. We also assume that the coefficient of rolling friction is zero.

	Visualize: 
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The initial kinetic energy, which is a combination of rotational and translational energy, is transformed in gravitational potential energy. We chose the bottom of the incline as the zero of the gravitational potential energy.

Solve: The conservation of energy equation Kf  Ugf  Ki  Ugi is
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The distance traveled along the incline is 
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Assess: This is a reasonable stopping distance for an object rolling up an incline when its speed at the bottom of the incline is approximately 10 mph.
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