Physics I

Homework V                                                                                                                 CJ

Chapter 5: 2, 14, 28, 33, 40, 46, 58
5.2. Model: We can assume that the ring is a particle.

	Visualize: 
	[image: image1.png]Physical representation







This is a static equilibrium problem. We will ignore the weight of the ring, because it is “very light,” so the only three forces are the tension forces shown in the free-body diagram. Note that the diagram defines the angle (.

Solve: Because the ring is in equilibrium it must obey 
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. This is a vector equation, so it has both x- and y-components: 
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We have two equations in the two unknowns 
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 and (. Divide the y-equation by the x-equation:
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Now we can use the x-equation to find 


[image: image8.wmf]2

3

50 N

94.3 N

coscos58.0

T

T

q

===

°


The tension in the third rope is 94.3 N directed 58.0( below the horizontal.

5.14. Model: We assume that the passenger is a particle acted on by only two vertical forces: the downward pull of gravity and the upward force of the elevator floor.

Visualize: Please refer to Figure Ex5.14. The graph has three segments corresponding to different conditions: (1) increasing velocity, meaning an upward acceleration, (2) a period of constant upward velocity, and (3) decreasing velocity, indicating a period of deceleration (negative acceleration).

Solve: Given the assumptions of our model, we can calculate the acceleration for each segment of the graph and then apply Equation 5.10. The acceleration for the first segment is
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For the second segment, ay  0 m/s2 and the apparent weight is
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For the third segment,


[image: image12.wmf]
Assess: As expected, the apparent weight is greater than normal when the elevator is accelerating upward and lower than normal when the acceleration is downward. When there is no acceleration the weight is normal. In all three cases the magnitudes are reasonable, given the mass of the passenger and the accelerations of the elevator.

5.28. Model: The piano is in static equilibrium and is to be treated as a particle.

	Visualize: 
	[image: image13.png]Physical representation

y

Known
m =500 kg
T,=500N
0,=15°
0, =125°

Find






Solve: (a) Based on the free-body diagram, Newton’s second law is
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Notice how the force components all appear in the second law with plus signs because we are adding forces. The negative signs appear only when we evaluate the various components. These are two simultaneous equations in the two unknowns T2 and T3. From the x-equation we find
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(b) Now we can use the y-equation to find
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5.33. Model: We can assume the foot is a single particle in equilibrium under the combined effects of gravity, the tensions in the upper and lower sections of the traction rope, and the opposing traction force of the leg itself. We can also treat the hanging mass as a particle in equilibrium. Since the pulleys are frictionless, the tension is the same everywhere in the rope. Because all pulleys are in equilibrium, their net force is zero. So they do not contribute to T.
	Visualize: 
	[image: image17.png]Physical representation
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Solve: (a) From the free-body diagram for the mass, the tension in the rope is
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(b) Using Newton’s first law for the vertical direction on the pulley attached to the foot,
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(c) Using Newton’s first law for the horizontal direction,
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Assess: Since the tension in the upper segment of the rope must support the foot and counteract the downward pull of the lower segment of the rope, it makes sense that its angle is larger (a more direct upward pull). The magnitude of the traction force, roughly one-tenth the weight of a human body, seems reasonable.

5.40. Model: We assume that Sam is a particle moving in a straight horizontal line under the influence of two forces: the thrust of his jet skis and the resisting force of friction on the skis. We can use one-dimensional kinematics.
	Visualize: 
	

	[image: image26.png]Pictorial representation
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Solve: (a) The friction force of the snow can be found from the free-body diagram and Newton’s first law, since there’s no acceleration in the vertical direction:
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Then, from Newton’s second law:
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From kinematics:
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(b) During the acceleration, Sam travels to
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After the skis run out of fuel, Sam’s acceleration can again be found from Newton’s second law:


[image: image32.wmf](

)

2

net

netk1

73.5 N

73.5 N0.98 m/s

75 kg

x

F

Ffa

m

-

=-=-Þ===-


Since we don’t know how much time it takes Sam to stop:
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The total distance traveled is 
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  229 m.

Assess: A top speed of 16.9 m/s (roughly 40 mph) seems quite reasonable for this acceleration, and a coasting distance of nearly 150 m also seems possible, starting from a high speed, given that we’re neglecting air resistance.

5.46. Model: We will model the box as a particle, and use the models of kinetic and static friction.

	Visualize: 
	[image: image36.png]Pictorial and physical representations
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The pushing force is along the x-axis, but the force of friction acts along the –x-axis. A component of the box’s weight acts along the –x-axis as well. The box will move up if the pushing force is at least equal to the sum of the friction force and the component of the weight in the x-direction.

Solve: Let’s determine how much pushing force you would need to keep the box moving up the ramp at steady speed. Newton’s second law for the box in dynamic equilibrium is

(Fnet)x  (Fx  nx  wx  (fk)x  (Fpush)x 0 N – mg sin( – fk  Fpush  0 N

(Fnet)y  (Fy  ny  wy  (fk)y  (Fpush)y  n – mg cos(  0 N  0 N  0 N

The x-component equation and the model of kinetic friction yield:

Fpush  mg sin(  fk  mg sin(  (kn
Let us obtain n from the y-component equation as n  mg cos(, and substitute it in the above equation to get

Fpush  mg sin(  (k mg cos(  mg (sin(  (k cos()

                     (100 kg)(9.80 m/s2)(sin 20(  0.60 cos20()  888 N

The force is less than your maximum pushing force of 1000 N. That is, once in motion, the box could be kept moving up the ramp. However, if you stop on the ramp and want to start the box from rest, the model of static friction applies. The analysis is the same except that the coefficient of static friction is used and we use the maximum value of the force of static friction. Therefore, we have 

Fpush  mg (sin(  (s cos()  (100 kg)(9.80 m/s2)(sin 20(  0.90 cos 20()  1160 N

Since you can push with a force of only 1000 N, you can’t get the box started. The big static friction force and the weight are too much to overcome.

5.58. Model: We will model the sculpture as a particle of mass m. The ropes that support the sculpture will be assumed to have zero mass. 

	Visualize: 
	[image: image37.png]Pictorial representation
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Solve: Newton’s first law in component form is

(Fnet)x  (Fx  T1x  T2x  wx  – T1 sin 30(  T2 sin 60(  0 N  0 N

(Fnet)y  (Fy  T1y  T2y  wy  T1 cos 30(  T2 cos 60( – w  0 N

Using the x-component equation to obtain an expression for T1 and substituting into the y-component equation yields:
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Substituting this value of T2 back into the x-compoent equation,
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We will now find a rope size for a tension force of 433 lbs, that is, the diameter of a rope with a safety rating of 433 lbs. Since the cross-sectional area of the rope is 
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Any diameter larger than 0.371 inch will ensure a safety rating of at least 433 lbs. The rope size corresponding to a diameter of 3/8 of an inch will therefore be appropriate.

Assess: If only a single rope was used to hang the sculpture, the rope would have to support a weight of 500 lbs. The diameter of the rope for a safety rating of 500 lbs is 0.399 inches, and the rope size jumps from a diameter of 3/8 to 4/8 of an inch. Also note that the weight of the sculpture is distributed in the two ropes. It is the sum of the y-components of the tensions in the ropes that will equal the weight of the sculpture.
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