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Abstract. We show that the natural frequency of a mass-spring-damper system modeled
by a constant coefficient second order differential equation occurs naturally and frequently
when maximizing the amplitude of the steady-state response. Specifically, if any parameter
other than the forcing frequency varies, the maximum amplitude of the response occurs at
the natural frequency.

1. The natural frequency: more natural and more frequent than expected

A common problem in a first course in differential equations is to model a mass-spring-
damper system under the influence of a periodic forcing function. Using Newton’s laws of
motion, one can arrive at the following differential equation to model the position x(t) of an
object with mass m, relative to its equilibrium by

mx′′ + bx′ + kx = F0 cos(ωt).(1)

The non-negative constants b and k are called the damping constant and spring constant,
and the mass is under the influence of a periodic external force of strength F0 and frequency
ω. The natural frequency of a mass-spring-damper system,

√
k/m, occurs naturally and

frequently when finding the maximum amplitude of solutions. It is well known that the
maximum amplitude of an undamped system (when b = 0) occurs when ω is the natural
frequency, and the amplitude of the velocity is maximized at the natural frequency regardless
of damping. If any one parameter of the mass, spring constant or damping constant varies,
the maximum amplitude occurs when the parameters m, k and ω satisfy ω =

√
k/m, that is

they occur at the natural frequency.

1.1. The phenomenon of practical resonance. A standard application problem is to find
the “resonant frequency,” the value of ω at which the amplitude of the steady-state response
of (1) is maximized. Typically, one first considers the case of a “pure resonance,” when an

undamped system is forced at its natural frequency. That is, when b = 0 and ω =
√

k/m. In
this case, we have

xp(t) =
F0

2
√
km

t sin

(√
k

m
t

)
.

Here the amplitude of the particular solution grows without bound. We quickly dismiss
this possibility, as real-world applications have non-zero damping, and study (1) with b > 0.
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Figure 1. A pure resonance, here m = 1, b = 0, k = 16 with forcing cos(4t).

In this case the “steady-state” response is

xp(t) =
(k −mω2)F0

b2ω2 + (k −mω2)2
cos(ωt) +

bωF0

b2ω2 + (k −mω2)2
sin(ωt).

Recalling that the amplitude of A cos(ωt) + B sin(ωt) is
√
A2 + B2, we have

Amplitude of the steady-state response =
F0√

(k −mω2)2 + b2ω2
.

In usual applications, the mass, spring constant and damping constants are fixed and only
the forcing frequency, ω, is allowed to vary. Then, the amplitude of the steady-state response
of the damped system (1) is maximized at forcing frequency

ωres =

√
k

m
− b2

2m2
,

provided 2km− b2 > 0. See for example [1, Section 3.9], [2, Section 5.6], or [3, Section 3.5].

1.2. Variations on the practical resonance. After finding the resonant frequency, I asked
my class what would happen in a specific system if instead of varying the frequency ω, we
let only the damping constant b vary. Instead of a peak for typical resonance curve, we saw
much different behavior:
The maximum amplitude occurs when b = 0, since the presence of damping diminishes the
motion of the mass. This observation leads to an even more natural result:

Theorem 1. If we allow only one parameter out of m, b or k to vary, the amplitude of
the steady-state response is maximized when the parameters satisfy the natural frequency
relationship ω =

√
k/m. To be precise,

i) If only m is allowed to vary, the amplitude of the steady-state response is maximized
when m = k/ω2.

ii) If only k is allowed to vary, the amplitude of the steady-state response is maximized when
k = mω2.
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Figure 2. A typical resonance curve on the left, with m = 1, b = 4, k = 100
and F0 = 100 and ω is varying. The peak corresponds to a practical resonance.
On the right, b is allowed to vary, with m = 1, k = 100, F0 = 100 and ω = 5.

iii) If only b is allowed to vary, the amplitude of the steady-state response is maximized when

b = 0. Further, the amplitude becomes unbounded if ω =
√
k/m.

Proof. We begin with the case of varying the mass. Here, we consider the amplitude as a
function of m, with F0, k, b and ω as fixed constants. We wish to maximize

f(m) =
F0√

(k −mω2)2 + b2ω2

We note that, the real-valued function f(m) is maximized exactly when the non-negative
quantity in the square root of the denominator is minimized. So we minimize

g(m) = (k −mω2)2 + b2ω2

with respect to m. Then, g′(m) = −2ω2(k−mω2), and g′′(m) = 4ω4m. Here g′(m) = 0 when
k − mω2 = 0, or mcrit = k/ω2. To verify this is a minimum, substituting into the second
derivative we see g′′(mcrit) = 4mkω2 > 0. This minimizes the denominator of the amplitude,
hence the maximum amplitude occurs when m = k/ω2.

The case of varying k proceeds similarly by minimizing the denominator. We find that the
amplitude is maximized when the function

h(k) = (k −mω2)2 + b2ω2

is minimized with respect to k. Since h′(k) = 2(k − mω2) and h′′(k) = 2, the maximum
amplitude occurs when k = mω2.

In the final case of varying the damping constant, we proceed similarly. In this case, the
amplitude is maximized when the function

j(b) = (k −mω2)2 + b2ω2
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is minimized. Here j′(b) = 2bω2 and j′′(b) = 2ω2. At bcrit = 0, we have j(0) = (k−mω2)2 > 0
and the amplitude is

Amplitude of the steady-state response

∣∣∣∣
b=0

=
F0√

(k −mω2)2
.

The amplitude is unbounded when ω =
√
k/m. That is, we have rediscovered the pure

resonance phenomenon.
In all cases, the amplitude of the steady-state response is maximized when the parameters

are tuned to the natural frequency relationship ω =
√

k/m.
�
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