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Abstract. We investigate L1 → L∞ dispersive estimates for the massless two dimen-

sional Dirac equation with a potential. In particular, we show that the Dirac evolution

satisfies the natural t−
1
2 decay rate, which may be improved to t−

1
2−γ for any 0 ≤ γ < 3

2

at the cost of spatial weights. We classify the structure of threshold obstructions as being

composed of a two dimensional space of p-wave resonances and a finite dimensional space

of eigenfunctions at zero energy. We show that, in the presence of a threshold resonance,

the Dirac evolution satisfies the natural decay rate except for a finite-rank piece. While

in the case of a threshold eigenvalue only, the natural decay rate is preserved. In both

cases we show that the decay rate may be improved at the cost of spatial weights.

1. Introduction

We consider the linear Dirac equation with a potential:

i∂tψ(x, t) = (Dm + V (x))ψ(x, t), ψ(x, 0) = ψ0(x).(1)

Here the spatial variable x ∈ R2, and ψ(x, t) ∈ C2. The free Dirac operator Dm is defined

by

Dm = −iα · ∇+mβ = −i
2∑

k=1

αk∂k +mβ(2)

where m ≥ 0 is a constant, and the 2× 2 Hermitian matrices α0 := β and αj satisfy

(3) αjαk + αkαj = 2δjk1C2 , j, k ∈ {0, 1, 2}.

We consider the massless case, when m = 0. For concreteness, we use

β =

(
1 0

0 −1

)
, α1 =

(
0 1

1 0

)
, α2 =

(
0 −i
i 0

)
.(4)
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There is much interest in the massless case due to its connection to graphene, see [26] for

example. The Dirac equation was derived by Dirac as an attempt to connect the theories

of quantum mechanics and special relativity. Dirac’s derivation allowed for a model that

is first order in time, as required for quantum mechanical interpretations while having a

finite speed of propagation and allowing for external fields in a relativistically invariant

manner. For a broader introduction to the Dirac equation, we refer the reader to the

excellent text of Thaller, [33].

The following identity,1 which follows from (3),

(5) (Dm−λ1)(Dm +λ1) = (−iα ·∇+mβ−λ1)(−iα ·∇+mβ+λ1) = (−∆ +m2−λ2)

allows us to formally define the free Dirac resolvent operator R0(λ) = (Dm − λ)−1 in

terms of the free resolvent R0(λ) = (−∆− λ)−1 of the Schrödinger operator for λ in the

resolvent set:

R0(λ) = (Dm + λ)R0(λ
2 −m2).(6)

For the massless equation, when m = 0, we have

R0(λ) = (−iα · ∇+ λ)R0(λ
2) := (D0 + λ)R0(λ

2).

Much of the analysis in this paper will be based on properties of R0(λ) as λ → 0. It

should be emphasized that while the Dirac and Schrödinger resolvents are closely related

by (6), the massless Dirac operator has very different behavior from the massive Dirac

or Schrödinger operators in the low energy regime. For example, R0(0) exists as a well-

defined operator while R0(λ
2) has a logarithmic singularity at the origin and the resolvent

of a massive Dirac operator has a logarithmic singularity at the threshold λ = ±m. These

differences carry over into the low-energy asymptotic structure of resolvents of D0 +V (x),

which is again distinct from the threshold expansions for either Schrödinger or massive

Dirac operators, [19, 21].

Detailed asymptotic expansions for the resolvents of both D0 and its perturbations are

computed in Section 3. For certain choices of potential, the operator D0 + V (x) has an

eigenvalue at zero. It is also possible for zero to be a non-regular point of the spectrum

without an eigenvalue present, a phenomenon known as a resonance. We classify zero

1Here and throughout the paper, scalar operators such as −∆ + m2 − λ2 are understood as (−∆ +

m2 − λ2)1C2 . Similarly, we denote Lp(R2)× Lp(R2) as Lp(R2).
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energy resonances and eigenvalues in terms of distributional solutions to Hψ = 0 in

Section 7. We say that zero energy is regular if there are no distributional solutions to

Hψ = 0 with ψ ∈ L∞(R2), which may also be characterized by the uniform boundedness

of the perturbed resolvent (D0 + V − λ)−1 as λ → 0. We show that the classification

of resonances for the massless Dirac equation and their dynamical consequences do not

follow the same patterns as the Schrödinger equation.

Before stating the dynamical results, we introduce some notation that will be used

throughout the paper. The function χ(λ) will denote a smooth, even cut-off around the

origin in R. That is, χ(λ) = 1 if |λ| < λ1 and χ(λ) = 0 if |λ| > 2λ1 for a sufficiently

small, fixed constant λ1 > 0. The complementary cut-off is χ̃ = 1 − χ. We use the

notation 〈y〉 := (1 + |y|) 1
2 , and write H := D0 + V for the perturbed Dirac operator.

We also write |V (x)| . 〈x〉−β to indicate that the entries of the potential all satisfy

|Vij(x)| . 〈x〉−β, 1 ≤ i, j ≤ 2, where A ≤ B denotes that there is an absolute constant

C so that A . CB. We define the weighted spaces L1,γ = {f : 〈·〉γf ∈ L1(R2)}, and

L∞,−γ = {f : 〈·〉−γf ∈ L∞(R2)}. Our main results are the following small energy bounds:

Theorem 1.1. Assume that V is self-adjoint and |V (x)| . 〈x〉−β.

i) Assume that zero is regular. If β > 2, then

‖e−itHχ(H)‖L1→L∞ . 〈t〉−
1
2 .

Further, for 0 ≤ γ < 3
2
, if β > 2 + 2γ, then

‖e−itHχ(H)‖L1,γ→L∞,−γ . 〈t〉−
1
2
−γ.

ii) If zero is not regular, then for fixed 0 ≤ γ < 1
2
,

‖e−itHPacχ(H)− Ft‖L1,γ→L∞,−γ . 〈t〉−
1
2
−γ,

provided that β > 3 + 2γ. Here Ft is a finite-rank operator, which satisfies the bounds

supt ‖Ft‖L1→L∞ . 1 and if |t| > 2 one has ‖Ft‖L1→L∞ . (log |t|)−1.
iii) If there is only an eigenvalue at zero, then Ft = 0.

We emphasize that our main results are the low energy bounds presented above. We

also provide an explicit construction of the operator Ft, see (70) below. For the sake of

completeness, we include the high energy result stated below. Throughout the paper we

use the notation a− to mean a− ε for an arbitrarily small, but fixed ε > 0.
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Theorem 1.2. Assuming V is self-adjoint, has continuous entries satisfying |V (x)| .
〈x〉−β and there are no embedded eigenvalues in the real line. If β > 2, then

‖e−itH χ̃(H)〈H〉−2−‖L1→L∞ . 〈t〉−
1
2 .

Further, if 0 ≤ γ ≤ 3
2

and β > min(2 + 2γ, 3), we have

‖e−itH χ̃(H)〈H〉−2−‖L1,γ→L∞,−γ . 〈t〉−
1
2
−γ.

We note that the assumption of a lack of embedded eigenvalues is not needed for our

low energy results in Theorem 1.1, as the spectral properties in a neighborhood of zero are

dictated by the threshold behavior. The lack of embedded eigenvalues has been established

in the massive case, [10], and in the massless case for a sufficiently small potential, [13].

We establish the dispersive bounds by employing the functional calculus for the Dirac

operator. For the class of potentials we consider, H is self-adjoint and the spectrum of H

coincides with the real line. Under these circumstances, see [31], the Stone’s formula for

spectral measures yields:

(7) e−itHPac(H)f =
1

2πi

∫
R
e−itλ

[
R+
V (λ)−R−V (λ)

]
f dλ

Here the perturbed resolvents are R±V (λ) = limε→0+(D0 + V − (λ ± iε))−1, and their

difference provides the spectral measure. The operator Pac(H) is needed in the event that

there is an eigenvalue at zero energy. We take advantage of the identity (6) to develop

the spectral measure from Schrödinger resolvents. The Schrödinger free resolvent

R±0 (λ2) = lim
ε→0+

(−∆− (λ2 ± iε))−1

and the perturbed Schrödinger resolvent operators

R±V (λ2) = lim
ε→0+

(−∆ + V − (λ2 ± iε))−1

are well-defined as operators between weighted L2(R2) spaces, see [2].

To the authors’ knowledge, this is the first study of dispersive estimates for the two

dimensional massless Dirac equation. A recent paper of Cacciafesta and Seré, [12] in-

vestigated local smoothing estimates for the massless Dirac equation in dimensions two

and three. The massive Dirac has been studied by the first and third author, [21], with

Toprak [22]. The three-dimensional massive Dirac equation is more studied going back

to the work of Boussaid [9], and D’Ancona and Fanelli, [15]. The evolution kernel for
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the free Dirac operator in three dimensions was developed in [4] through the Feynman

path integral. Levinson’s Theorem for a massless three dimensional Dirac equation with

spherical potential was studied in [8] through a careful study of the Jost functions. Here

it was noted that the low energy behaves quite differently in the massive and massless

cases. The characterization of threshold obstructions and their effect on the dispersive

bounds have recently been studied by the first and third author and Toprak, [23]. Much

of the work has roots in the study of other dispersive equations, notably the Schrödinger

[30, 32, 24, 19, 20, 16, 34] and wave [15, 28, 5] equations.

Our low energy results in Theorem 1.1 establish the natural time decay 〈t〉− 1
2 for the

Dirac evolution while assuming less decay of the potential than has been required in the

massive case. The improvement comes from using a more delicate argument based on

Lipschitz continuity of the spectral measure, rather than direct integration by parts in

the Stone’s formula. A similar argument was used in [20].

In addition, this is the first result in which all the slow time decay caused by a p-

wave resonance is controlled in a finite rank term. Previous works on the Schrödinger

or wave equation, [30, 19, 28], did not observe this asymptotic structure. Even in the

weighted L2 setting, [30], finite rank leading order terms had an error whose decay was

only logarithmically better. The method we develop for computing spectral measures

here can recover an analogous result (finite rank leading order, with polynomial decay of

the remainder) for the Schrödinger evolution as well.

There is also much interest in the study of non-linear Dirac equations. See [25, 6, 14, 11]

for example. There is a longer history in the study of spectral properties of Dirac op-

erators. Limiting absorption principles for the Dirac operators have been studied in

[35, 27, 17, 13]. In particular, the recent work [17] of the authors applies in all dimen-

sions n ≥ 2 for both massive and massless equations, while the recent work of Carey,

et. al. [13] applies to massless equations. The lack of embedded eigenvalues, singular

continuous spectrum and other spectral properties is well established, [7, 27, 3, 13, 10].

In particular, for the class of potentials we consider, the Weyl criterion implies that

σac(H) = σ(D0) = (−∞,∞). There are no embedded eigenvalues provided the potential

is small, see Theorem 3.15 in [13].

The paper is organized as follows. We begin by proving the natural dispersive estimates

for the free massless Dirac operation in Section 2. In Section 3 we develop a variety of
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expansions for the free resolvent that will be needed to study the spectral measure in (7).

In Section 4 we prove Theorem 1.1 when zero energy is regular. In Section 5 we establish

more delicate expansions of the perturbed resolvent around the threshold in the presence

of resonances and/or eigenvalues so that we may prove Theorem 1.1 when the threshold

is not regular in Section 6. In Section 7 we provide a characterization of the threshold

obstructions that relates them naturally to the various subspaces of L2 that arise in the

resolvent expansions. Section 8 provides the high energy estimates to prove Theorem 1.2.

Finally, Section 9 contains the various integral estimates needed throughout the paper.

2. Free Dirac dispersive estimates

Due to the relationship between the massless free Dirac evolution and the free wave

equation, D2
0f = −∆f , we can expect a natural time decay rate of size |t|− 1

2 as one

has in the wave equation (when m = 0) provided the initial data has more than 3
2

weak

derivatives in L1(R2). In the case of Dirac equation, as in Schrödinger equation, the time

decay can be improved at the cost of spatial weights.

Theorem 2.1. We have the estimate

‖e−itD0〈D0〉−
3
2
−‖L1→L∞ . t−

1
2 .

Further, one has

‖〈x〉−γe−itD0〈D0〉−2−〈y〉−γ‖L1→L∞ . 〈t〉−
1
2
−γ,

for any 0 ≤ γ ≤ 3
2
.

The proof of this theorem is based on asymptotic expansions of the spectral measure

of the free Dirac operator, both at low energies and high energies. To best utilize these

expansions, we employ the notation

f(λ) = Õ(g(λ))

to denote
dj

dλj
f = O

( dj
dλj

g
)
, j = 0, 1, 2, 3, ...

The notation primarily refers to derivatives with respect to the spectral variable λ in the

expansions for the integral kernel of the free resolvent operator. In the context of (6), due

to the gradient, we use the Õ(g) to refer to |x− y| as well. If the derivative bounds hold
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only for the first k derivatives we write f = Õk(g). In addition, if we write f = Õk(1),

we mean that differentiation up to order k is comparable to division by λ and/or |x− y|.
This notation applies to operators as well as scalar functions; the meaning should be clear

from the context.

Proof of Theorem 2.1. First note that in the free case the Stone’s formula, (7), is

e−itD0 =

∫
R
e−itλ[R+

0 −R−0 ](λ) dλ.(8)

We consider the low energy first. Using (26), the formula [R+
0 −R−0 ](λ2)(x, y) = i

2
J0(λ|x−

y|), and the asymptotics for the Bessel functions, see [1, 32], we can write the integral

kernel of the difference of the resolvent operators as

(9) [R+
0 −R−0 ](λ)(x, y) = (−iα · ∇+ λ)[R+

0 −R−0 ](λ2)(x, y)

=

{
iλ
2
− λ2

4
α · (x− y) + Õ2(λ

3|x− y|2), |λ| |x− y| � 1

eiλ|x−y|ω̃+(λ|x− y|) + e−iλ|x−y|ω̃−(λ|x− y|), |λ| |x− y| & 1

where ω̃±(λ|x− y|) satisfies

ω̃±(λ|x− y|) = Õ
(
|λ|(1 + |λ||x− y|)−

1
2

)
.

Let µ0(λ)(x, y) := χ(λ)[R+
0 −R−0 ](λ)(x, y). The formula (9) implies that

(10) |µ0(λ)(x, y)| . |λ|(1 + |λ||x− y|)−
1
2 ,

(11) |∂λµ0(λ)(x, y)| . (1 + |λ||x− y|)
1
2 ,

(12) |∂2λµ0(λ)(x, y)| . |x− y|(1 + |λ||x− y|)
1
2 .

Thus, using (10) and (11) we have

(13) |µ0(λ1)(x, y)− µ0(λ2)(x, y)| . |λ1 − λ2|
1
2 |λ2|

1
2 ,

for |λ1| ≤ |λ2| . 1. To obtain this consider the cases |λ1− λ2| ≈ |λ2| and |λ1− λ2| � |λ2|
separately. In the former case the bound follows from (10). In the latter case, the mean

value theorem and (11) give the bound |λ1−λ2|(1 + |λ2||x− y|)
1
2 . Interpolating this with

(10) and noting that |λ1| ≈ |λ2|, we obtain (13).
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We also state two other bounds for µ0 which will be useful in later sections. The

interpolation argument above also implies that

(14) |µ0(λ1)(x, y)− µ0(λ2)(x, y)| . |λ1 − λ2|
1
2
+γ|λ2|

1
2
−γ〈x− y〉γ, 0 ≤ γ ≤ 1

2
.

Similarly, using (11) and (12) we obtain the bound

(15) |∂λµ0(λ1)(x, y)− ∂λµ0(λ2)(x, y)| . |λ1 − λ2|γ|x− y|γ(1 + |λ2||x− y|)
1
2 , 0 ≤ γ ≤ 1.

Using the support of χ(λ) in the definition of µ0, it is easy to see that∣∣∣ ∫
R
e−itλµ0(λ)(x, y) dλ

∣∣∣ . 1.

For |t| & 1, again using the support of χ(λ) and (13), we have

(16)
∣∣∣ ∫

R
e−itλµ0(λ)(x, y) dλ

∣∣∣ =
1

2

∣∣∣ ∫
R
e−itλ(µ0(λ)(x, y)− µ0(λ−

π

t
)(x, y))dλ

∣∣∣
. |t|−

1
2

∫ 1

−1
1 dλ . |t|−

1
2 .

For the weighted bounds, after two integration by parts, we have

(17)
∣∣∣ ∫

R
e−itλµ0(λ)(x, y) dλ

∣∣∣ =
1

t2

∣∣∣ ∫
R
e−itλ∂2λµ0(λ)(x, y) dλ

∣∣∣ . 1

t2
〈x〉

3
2 〈y〉

3
2 .

Interpolating these bounds we conclude for any γ ∈ [0, 3
2
] that∣∣∣ ∫

R
e−itλµ0(λ)(x, y) dλ

∣∣∣ . 〈t〉− 1
2

(〈x〉〈y〉
〈t〉

)γ
.

For large energies, to prove the first claim it suffices to bound

(18) sup
L≥1

∣∣∣∣ ∫ ∞
−∞

e−itλλ−
3
2
−χ̃(λ)χ(λ/L)[R+

0 −R−0 ](λ)(x, y) dλ

∣∣∣∣.
Noting that R+

0 −R−0 = [D0 + λ]J0(λ|x− y|) is comparable to λJ0(λ|x− y|), see (9) and

[1]. Using Lemmas 3.2 and 5.3 in [28], we have the bounds

|(18)| .

 t−
1
2

〈x〉
1
2 〈y〉

1
2

t
3
2

+ 1
t2

t > 2.

However these estimates rely on oscillation that may not be present when t is small. To

obtain a uniform bound for small times, the integrand must be absolutely convergent.
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Given the growth of |ω±(λ|x− y|)| . |λ|, we need a multiplier that decays like |λ|−2− to

conclude

sup
L≥1

∣∣∣∣ ∫ ∞
−∞

λ−2−χ̃(λ)χ(λ/L)[R+
0 −R−0 ](λ)(x, y) dλ

∣∣∣∣ . 1

uniformly in x and y for small t. The additional powers of λ correspond to extra mollifi-

cation in the x variable, using 〈D0〉−2− instead of 〈D0〉−
3
2
−. �

3. Free resolvent expansions around zero energy

In this section we study the behavior of the free Dirac resolvent more carefully by using

the properties of free Schrödinger resolvent R0(λ) = (−∆−λ)−1. Following [32, 19, 20, 22],

we have the following expansion for the Schrödinger resolvent. These results have their

roots in work of Jensen and Nenciu, [29].

Lemma 3.1. Let 0 < λ� 1. For λ|x− y| < 1, we have the expansions

(19) R±0 (λ2)(x, y) = g±(λ) +G0 + Õ2(λ
2|x− y|2 log(λ|x− y|))

= g±(λ) +G0 + g±1 (λ)G1 + λ2G2 + Õ3(λ
4|x− y|4 log(λ|x− y|)),

where (with γ denoting Euler’s constant)

g±(λ) = − 1

2π

(
log(λ/2) + γ

)
± i

4
(20)

g±1 (λ) = −λ
2

4
g±(λ)− λ2

8π
(21)

G0f(x) = − 1

2π

∫
R2

log |x− y|f(y) dy,(22)

G1f(x) =

∫
R2

|x− y|2f(y) dy,(23)

G2f(x) =
1

8π

∫
R2

|x− y|2 log |x− y|f(x) dy.(24)

For λ|x− y| & 1, we have

(25) R±0 (λ2)(x, y) = e±iλ|x−y|ω±(λ|x− y|), |ω(j)
± (y)| . (1 + |y|)−

1
2
−j, j = 0, 1, 2, . . . .

Using (6) we have

(26) R±0 (λ)(x, y) = [−iα · ∇+ λI]R±0 (λ2)(x, y)

We write (for |λ| |x− y| � 1)
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(27) R±0 (λ) = G0,0 + λg±(λ)G1,1 + λG1,0 + g±1 (λ)G2,1 + λ2G2,0

+ Õ2(λ
3|x− y|2 log(λ|x− y|))

where

G0,0(x, y) = R0(0)(x, y) = −iα · ∇G0(x, y) =
iα · (x− y)

2π|x− y|2
(28)

G1,1(x, y) = 1(29)

G1,0(x, y) = G0(x, y) = − 1

2π
log |x− y| = (−∆)−1(x, y)(30)

G2,1(x, y) = −iα · ∇G1(x, y) = −2iα · (x− y)(31)

G2,0(x, y) = −iα · ∇G2(x, y) = −iα · ∇(|x− y|2 log |x− y|)
8π

(32)

The subscripts indicate the powers of λ and log λ multiplying each operator in (27).

Lemma 3.2. We have

(33) R±0 (λ)(x, y) = G0,0(x, y) +O
(
|λ|(1 + (|λ| |x− y|)0−)

)
= O

(
λ+

1

|x− y|

)
.

(34) |∂λR±0 (λ)(x, y)| . (|λ||x− y|)0− + (|λ||x− y|)
1
2 ,

(35) |∂2λR±0 (λ)(x, y)| . |λ|−1(|λ||x− y|)0− + |λ|
1
2 |x− y|

3
2 .

Proof. The expansions follow from (27) when |λ| |x−y| � 1. Recall that when |λ| |x−y| &
1, we have the representation

R±0 (λ)(x, y) = e±iλ|x−y|ω̃±(λ|x− y|),

where ω̃±(λ|x− y|) satisfies

(36) ω̃±(λ|x− y|) = Õ
(
|λ|(1 + |λ||x− y|)−

1
2

)
.

Also using (28), the error in (33) is bounded by

χ̃(λ|x− y|)
(
|λ|

1
2 |x− y|−

1
2 + |x− y|−1

)
. |λ|.

The bounds (34) and (35) for |λ| |x − y| & 1 follow similarly using the high energy

representation of R±0 above. �
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As a corollary we have the following Lipschitz bounds. The 1
2
-Lipschitz bound cannot

be improved without growth in |x− y|, which leads to weights in the dispersive bounds,

due to the large λ|x− y| term.

Corollary 3.3. For |λ1| ≤ |λ2| . 1, we have

(37)
∣∣R±0 (λ1)(x, y)−R±0 (λ2)(x, y)

∣∣ . |λ1 − λ2| 12 |λ2| 12−(1 + |x− y|0−),

and more generally

(38)
∣∣R±0 (λ1)(x, y)−R±0 (λ2)(x, y)

∣∣ .
|λ1 − λ2|

1
2
+γ|λ2|

1
2
−γ−(|x− y|γ + |x− y|0−), 0 ≤ γ <

1

2
.

Moreover for each 0 ≤ γ ≤ 1, we have

(39)
∣∣∂λR±0 (λ1)(x, y)− ∂λR±0 (λ2)(x, y)

∣∣ .
|λ1 − λ2|γ|λ1|−γ−

(
|x− y|0− + |x− y|

1
2
+γ
)
, 0 ≤ γ ≤ 1.

Proof. Note that (37) follows from (38) with γ = 0. When |λ1 − λ2| & |λ2|, the bound

(38) follows from (33) since the leading term G0,0 cancels out. When |λ1 − λ2| � |λ2|,
using the mean value theorem, (34), and noting that |λ1| ≈ |λ2|, we obtain∣∣R±0 (λ1)(x, y)−R±0 (λ2)(x, y)

∣∣ . |λ1 − λ2|((|λ2||x− y|)0− + (|λ2||x− y|)
1
2

)
.

Also note that when |λ2||x− y| & 1,∣∣R±0 (λ1)(x, y)−R±0 (λ2)(x, y)
∣∣ . |λ2| 12 |x− y|− 1

2 ,

and when |λ2||x− y| � 1 by (33)∣∣R±0 (λ1)(x, y)−R±0 (λ2)(x, y)
∣∣ . |λ2|(1 + (λ2|x− y|)0−

)
.

Interpolating these bounds, we obtain (38). The proof of (39) is similar using (34) and

(35). �

In the case when zero is not regular, see Definition 4.1 below, we will need a further

expansion of R±0 :
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Lemma 3.4. We have the expansion for the kernel of the free resolvent

(40) R±0 (λ)(x, y) = G0,0(x, y) + λg±(λ)G1,1(x, y) + λG1,0(x, y) + E±0 (λ)(x, y).

Further, when |λ| ≤ 1, the error term satisfies

|E±0 (λ)(x, y)| . |λ|(|λ|〈x− y〉)k, 0 < k < 1.

Moreover, for 0 ≤ γ < 1
2

and |λ1| ≤ |λ2| . 1, we have

|E±0 (λ2)(x, y)− E±0 (λ1)(x, y)| . |λ1 − λ2|
1
2
+γ|λ2|

1
2
−γ+k〈x− y〉k, 1

2
≤ k < 1.

Proof. The first bound for the error term follows from (27) when |λ||x − y| � 1. When

|λ||x− y| & 1, it follows by writing

|E±0 (λ)(x, y)| . |λ|
(1 + |λ||x− y|) 1

2

+ |x− y|−1 + |λ|| log(|λ||x− y|) . |λ|(|λ|〈x− y〉)k,

provided that k > 0. Similarly, note that when |λ||x− y| � 1 we have

|∂λE±0 (λ)(x, y)| . (|λ||x− y|)k, 0 < k < 1,

and for |λ||x− y| & 1 we have

|∂λE±0 (λ)(x, y)| . (|λ||x− y|)
1
2 + | log(|λ||x− y|) . (|λ|〈x− y〉)k, k ≥ 1

2
.

Using these bounds with 1
2
≤ k < 1, we obtain the Lipschitz bound by interpolating

the trivial bound,

|[E±0 (λ1)− E±0 (λ2)(x, y)| . |λ2|(|λ2|〈x− y〉)k,

with the bound we obtain using the mean value theorem:

|[E±0 (λ1)− E±0 (λ2)](x, y)| . |λ1 − λ2|(|λ2|〈x− y〉)k.

�
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4. Small energy dispersive estimates when zero is regular

As usual, see for example [32, 19, 21, 23, 22], we use the symmetric resolvent identity

to understand the low energy evolution. In the Dirac context the potentials are matrix-

valued, and we have the assumption that the matrix V : R2 → C2×2 is self-adjoint. Hence,

we may use the spectral theorem to write

V = B∗

(
ζ1 0

0 ζ2

)
B

with ζj ∈ R. To employ the symmetric identity, with ηj = |ζj|
1
2 , we write

V = B∗

(
η1 0

0 η2

)
U

(
η1 0

0 η2

)
B = v∗Uv,

where

U =

(
sign(ζ1) 0

0 sign(ζ2)

)
, and v =

(
a b

c d

)
:=

(
η1 0

0 η2

)
B.(41)

Note that the entries of v are . 〈x〉−β/2, provided that the entries of V are . 〈x〉−β.

Define the operators

(42) M±(λ) = U + vR±0 (λ)v∗,

and let

(43) T := U + vG0,0v∗ = M±(0).

Definition 4.1. We make the following definitions that characterize zero energy obstruc-

tions.

i) We define zero energy to be regular if T = M±(0) is invertible on L2(R2).

ii) We say there is a resonance of the first kind at zero if T is not invertible on L2, but

S1vG1,1v∗S1 is invertible on S1L
2 where S1 is the Riesz projection onto the kernel of

T .

iii) We say there is a resonance of the second kind at zero if S1vG1,1v∗S1 is not invertible.

iv) Let S2 be the Riesz projection onto the kernel of S1vG1,1v∗S1, then S1 − S2 has rank

at most two and S1 − S2 6= 0 corresponds to the existence of ‘p-wave’ resonances at

zero. S2 6= 0 corresponds to the existence of an eigenvalue at zero. In contrast to
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the massive case, see [21], there are no ‘s-wave’ resonances in the massless case. See

Section 7 below for a complete characterization.

v) Noting that vG0,0v∗ is compact and self-adjoint, T = U + vG0,0v∗ is a compact per-

turbation of U . Since the spectrum of U is in {±1}, zero is an isolated point of the

spectrum of T and the kernel is finite dimensional. It then follows that S1 is a finite

rank projection, and since S2 ≤ S1, so is S2.

We employ the following terminology from [32, 19, 20]:

Definition 4.2. We say an operator T : L2(R2)→ L2(R2) with kernel T (·, ·) is absolutely

bounded if the operator with kernel |T (·, ·)| is bounded from L2(R2) to L2(R2).

We note that Hilbert-Schmidt and finite-rank operators are absolutely bounded opera-

tors. Recall that the Hilbert-Schmidt norm of an integral operator T with integral kernel

T (x, y) is defined by

‖T‖2HS =

∫
R4

|T (x, y)|2 dx dy.

We now concentrate on the case when zero is regular. The following expansions for

M±(λ) around zero energy suffice in this case.

Lemma 4.3. Assume that |V (x)| . 〈x〉−β.

i) If β > 2, then

(44) M±(λ) = T +O(λ1−).

ii) If β > 2 + 2γ for some 0 ≤ γ < 1
2
, then for 0 < |λ1| ≤ |λ2| . 1, we have

(45) M±(λ1)−M±(λ2) = O
(
|λ1 − λ2|

1
2
+γ|λ2|

1
2
−γ−).

iii) If β > 3, then

(46) ∂λM
±(λ) = O(λ0−).

iv) If β > 3 + 2γ for some 0 ≤ γ ≤ 1, then for 0 < |λ1| ≤ |λ2| . 1 , we have

(47) ∂λM
±(λ1)− ∂λM±(λ2) = O

(
|λ1 − λ2|γ|λ1|−γ−

)
.

In all statements above the error terms are understood in the Hilbert-Schmidt norm.

We note that the uniform L1 → L∞ bound requires only the bounds (44) and (45) with

γ = 0, hence only requiring that the entries of V satisfy |V (x)| . 〈x〉−2−.
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Proof. Using (42), (43), and (33), we have[
M±(λ)− T

]
(x, y) = v(x)

(
R±0 (λ)− G0,0

)
(x, y)v∗(y) = O

(
|λ|1− 1 + |x− y|0−

〈x〉1+〈y〉1+
)
.

This yields (44). To obtain (45), we use (38):[
M±(λ1)−M±(λ2)

]
(x, y) = v(x)

(
R±0 (λ1)−R±0 (λ2)

)
(x, y)v∗(y)

= O
(
|λ1 − λ2|

1
2
+γ|λ2|

1
2
−γ− |x− y|γ + |x− y|0−

〈x〉1+γ+〈y〉1+γ+
)

= O
(
|λ1 − λ2|

1
2
+γ|λ2|

1
2
−γ−1 + |x− y|0−

〈x〉1+〈y〉1+
)
.

This yields (45). Similarly, writing

∂λM
±(λ)(x, y) = v(x)∂λR±0 (λ)(x, y)v∗(y),

we note that (46) follows from (34), and (47) from (39). �

The following lemma establishes analogous bounds for (M±(λ))−1 when zero is regular.

Lemma 4.4. Assume that |V (x)| . 〈x〉−β and that zero is a regular point of the spectrum.

If β > 2, then M±(λ) is invertible with a uniformly bounded inverse provided that 0 <

|λ| � 1.

i) If β > 2 + 2γ for some 0 ≤ γ < 1
2
, then for 0 < |λ1| ≤ |λ2| � 1, we have

(48) (M±(λ1))
−1 − (M±(λ2))

−1 = O
(
|λ1 − λ2|

1
2
+γ|λ2|

1
2
−γ−).

ii) If β > 3, then

(49) ∂λ(M
±(λ))−1 = O(λ0−).

iii) If β > 3 + 2γ for some 0 ≤ γ ≤ 1, then for 0 < |λ1| ≤ |λ2| � 1 , we have

(50) ∂λ(M
±(λ1))

−1 − ∂λ(M±(λ2))
−1 = O

(
|λ1 − λ2|γ|λ1|−γ−

)
.

In all statements above the error terms are understood as absolutely bounded operators.

Proof. When zero is regular, the operator T is invertible with an absolutely bounded

inverse. The absolute boundedness of this operator is shown in the massive case in

Lemma 7.1 in [21]. When m = 0 the proof is simpler and can be proven as in the

Schrödinger case, see Lemma 2.7 in [16]. Therefore, by Lemma 4.3, M±(λ) is invertible

with a uniformly bounded inverse provided that 0 < |λ| � 1 and |V (x)| . 〈x〉−2−.
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Using resolvent identity, the boundedness of (M±)−1 and (45) we obtain (48):

(M±(λ1))
−1 − (M±(λ2))

−1 = (M±(λ2))
−1[M±(λ2)−M±(λ1)

]
(M±(λ1))

−1

= O
(
|λ1 − λ2|

1
2
+γ|λ2|

1
2
−γ−).

To obtain (49), we use (46) and the identity

∂λ(M
±(λ))−1 = −(M±(λ))−1

(
∂λM

±(λ)
)
(M±(λ))−1.

Finally, (50) follows from (48), (46) and (49) after writing

∂λ(M
±(λ1))

−1 − ∂λ(M±(λ2))
−1 =

[
(M±(λ2))

−1 − (M±(λ1))
−1](∂λM±(λ2)

)
(M±(λ2))

−1

+ (M±(λ1))
−1[∂λ(M±(λ2)

)
−
(
∂λM

±(λ1)
)]

(M±(λ2))
−1

+ (M±(λ1))
−1(∂λM±(λ1)

)[
(M±(λ2))

−1 − (M±(λ1))
−1].
�

We are now ready to prove the small energy assertions of Theorem 1.1 when zero is

regular by studying the small energy portion of the Stone’s formula, (7),∫ ∞
−∞

e−itλχ(λ)[R+
V −R

−
V ](λ)(x, y) dλ.

In particular, we will prove the following family of bounds, which includes the uniform

bound when γ = 0.

Proposition 4.5. Fix 0 ≤ γ < 3
2

and assume that |V (x)| . 〈x〉−2−2γ−. If zero is regular,

then we have the bound∣∣∣∣∫ ∞
−∞

e−itλχ(λ)[R+
V −R

−
V ](λ)(x, y) dλ

∣∣∣∣ . 〈x〉γ〈y〉γ〈t〉− 1
2
−γ.(51)

In [21], the authors studied the solution operator as an operator H1 → BMO because

the operator G0,0 is not bounded from L1 → L2 or from L2 → L∞. Simple use of iterated

resolvent identity was not enough to deal with this problem in the massive case since one

relies on the orthogonality properties of the most singular terms in the expansion of the

operator M±(λ)−1 =
(
U + vR±0 (λ)v∗

)−1
to get uniform estimates in x, y. In [22], this

problem was overcome by selectively using the iterated resolvent identity for M±(λ)−1

only for certain terms arising in the expansion.
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Since we do not rely on orthogonality arguments here, we need only use the iterated

symmetric resolvent identity:

(52) R±V = R±0 −R±0 VR±0 +R±0 VR±0 VR±0 −R±0 VR±0 v∗M−1
± vR±0 VR±0 .

We consider the contribution of the first three summands in (52) to the Stone’s formula.

Lemma 4.6. Let Γ± = R±0 − R±0 VR±0 + R±0 VR±0 VR±0 . Then provided that |V (x)| .
〈x〉−2−2γ− for some 0 ≤ γ < 3

2
, then we have the bound∣∣∣ ∫

R
e−itλχ(λ)[Γ+ − Γ−](λ)(x, y)dλ

∣∣∣ . 〈x〉γ〈y〉γ〈t〉− 1
2
−γ.

Proof. The contribution of the first term is the free evolution which was dealt with above

in Theorem 2.1. We note the following useful algebraic identity

M∏
k=0

A+
k −

M∏
k=0

A−k =
M∑
`=0

( `−1∏
k=0

A−k

)(
A+
` − A

−
`

)( M∏
k=`+1

A+
k

)
,(53)

It suffices to consider the contribution of the following to the integral

Γ̃ := µ0VR+
0 + µ0VR+

0 VR+
0 +R−0 V µ0VR+

0 ,

where µ0(λ) = χ(λ)(R+
0 (λ) − R−0 (λ)). The remaining terms have similar structure with

differences µ0 on the right instead of the left.

Using the bounds (10) and (33), and noting Lemma 9.2, we see that the kernel of Γ̃ is

bounded in λ, x, y and it is supported in |λ| . 1. Therefore, we restrict our attention to

the case |t| > 1.

We start with the case 0 ≤ γ < 1
2
. Using the Lipschitz bounds (14), (38), and the

pointwise bounds (10), (33), Lemmas 9.2 and 9.3 we see that for |λj| . 1, j = 1, 2,

|Γ̃(λ1)(x, y)− Γ̃(λ2)(x, y)| . |λ1 − λ2|
1
2
+γ〈x〉γ〈y〉γ.

Therefore, as in (16), we have∫
R
e−itλΓ̃(λ)(x, y)dλ =

1

2

∫
|λ|.1

e−itλ
[
Γ̃(λ)(x, y)− Γ̃(λ− π

t
)(x, y)

]
dλ

= O(|t|−
1
2
−γ)〈x〉γ〈y〉γ.

The case 1
2
≤ γ < 3

2
is similar after an integration by parts. That is, we need to bound∫
R
e−itλΓ̃(λ)(x, y)dλ =

1

it

∫
R
e−itλ∂λΓ̃(λ)(x, y)dλ
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To do this, we need Lipschitz bounds on ∂λΓ̃. Writing

∂λΓ̃ = ∂λ
(
µ0VR+

0

)
+ ∂λ

(
µ0VR+

0 VR+
0

)
+ ∂λ

(
R−0 V µ0VR+

0

)
:= Γ1 + Γ2 + Γ3,

we seek to bound Γj(λ1) − Γj(λ2) for j = 1, 2, 3. We consider Γ1, the others are similar.

Note that

(54) Γ1(λ1)− Γ1(λ2) = [∂λµ0(λ1)− ∂λµ0(λ2)]VR+
0 (λ1) + ∂λµ0(λ2)V [R+

0 (λ1)−R+
0 (λ2)]

+ [µ0(λ1)− µ0(λ2)]V ∂λR+
0 (λ1) + µ0(λ2)V [∂λR+

0 (λ1)− ∂λR+
0 (λ2)].

Let γ0 ∈ [0, 1) be such that γ = γ0 + 1
2

and using (15) and (39), (for consistency, we

take |λ1| ≤ |λ2|)

|∂λµ0(λ1)(x, y)− ∂λµ0(λ2)(x, y)| .|λ1 − λ2|γ0|x− y|γ0(1 + |λ2||x− y|)
1
2

. |λ1 − λ2|γ0〈x〉γ〈y〉γ,∣∣∂λR±0 (λ1)(x, y)− ∂λR±0 (λ2)(x, y)
∣∣ .|λ1 − λ2|γ0|λ1|−γ0−(|x− y|0− + |x− y|

1
2
+γ0
)

. |λ1 − λ2|γ0|λ1|−γ0−〈x〉γ〈y〉γ(1 + |x− y|0−).

In addition using (14) with γ = 1
2

we have

|µ0(λ1)(x, y)− µ0(λ2)(x, y)| . |λ1 − λ2|〈x− y〉
1
2 . |λ1 − λ2|γ0〈x〉

1
2 〈y〉

1
2 .

Where the last bound follows since |λ1 − λ2| < 1 and γ0 < 1. Similarly, using (38) with

γ = 1
2
− we obtain∣∣R±0 (λ1)(x, y)−R±0 (λ2)(x, y)

∣∣ . |λ1 − λ2|γ0〈x〉 12 〈y〉 12 (1 + |x− y|0−),

Finally by (10) and (33), we have

|µ0(λ)(x, y)| . 1, |R±0 (λ)(x, y)| . (1 + |x− y|−1).

Putting this all together and using Lemma 9.2, we see that

|[Γ1(λ1)− Γ1(λ2)](x, y)| . |λ1 − λ2|γ0 |λ1|−1+〈x〉γ〈y〉γ
∫
R2

〈y1〉−2−(1 + |y − y1|−1)dy1

. |λ1 − λ2|γ0|λ1|−1+〈x〉γ〈y〉γ.

Similarly, using Lemmas 9.3 and 9.4, we see that Γ2 and Γ3 satisfy the same estimate.

Thus
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R
e−itλΓ̃(λ)(x, y)dλ =

1

it

∫
R
e−itλ∂λΓ̃(λ)(x, y)dλ

=
1

2it

∫
|λ|.1

e−itλ
[
∂λΓ̃(λ)(x, y)− ∂λΓ̃(λ− π

t
)(x, y)

]
dλ

= O(|t|−1−γ0)〈x〉γ〈y〉γ = O(|t|−
1
2
−γ)〈x〉γ〈y〉γ.

�

The lemma below takes care of the contribution of M−1 term for 0 ≤ γ < 1
2
. In

contrast to the massive case [21, 22] or Schrödinger [20], for the massless Dirac bound,

the argument employed here does not require any cancellation between the ‘+’ and ‘-’

terms in the Stone’s formula, (7).

Lemma 4.7. Fix 0 ≤ γ < 1
2
. Assume that |V (x)| . 〈x〉−2−2γ−. Let T (λ) be an absolutely

bounded operator satisfying (for |λ|, |λ1|, |λ2| . 1 with |λ1| ≤ |λ2|)∥∥|T (λ)|
∥∥
L2→L2 . |λ|−1+,∥∥|T (λ1)− T (λ2)|

∥∥
L2→L2 . |λ1|−1+|λ1 − λ2|

1
2
+γ.

Then ∣∣∣ ∫
R
e−itλχ(λ)

[
R±0 VR±0 v∗TvR±0 VR±0

]
(λ)(x, y)dλ

∣∣∣ . 〈t〉− 1
2
−γ〈x〉γ〈y〉γ.

Note that the hypothesis is satisfied by the mean value theorem if T (λ) = Õ1(λ
− 1

2
+)

as an absolutely bounded operator. That is to say, |T (λ)| . λ−
1
2
+ and |∂λT (λ)| . λ−

3
2
+.

Also note that when zero is regular M−1 satisfies the hypothesis provided that |V (x)| .
〈x〉−2−2γ−, see Lemma 4.4.

Proof. Dropping ± signs, let R̃ := vR0VR0. Using the support of χ(λ) as well as the

bounds (33) and (38) for the free resolvent and the integral estimates in Lemmas 9.4 and

9.3 we have (provided that |V (x)| . 〈x〉−2−2γ−, 0 ≤ γ < 1
2
)

(55) |R̃(λ)(y1, y)| . (1 + |y1 − y|0−)〈y1〉−1−

(56) |R̃(λ1)(y1, y)− R̃(λ2)(y1, y)| . |λ1 − λ2|
1
2
+γ|λ2|

1
2
−γ−〈y〉γ〈y1〉−1−.

Note that (55) and Lemma 9.2 imply that L2
y1

norm of R̃(λ)(y1, y) is bounded uniformly

in y and λ, while (56) implies that the L2
y1

norm of R̃(λ1)(y1, y)− R̃(λ2)(y1, y) is bounded

by 〈y〉γ|λ1 − λ2|
1
2
+γ.
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Using these bounds and the hypothesis for T , using (53) we see that (with Γ :=

R±0 VR±0 v∗TvR±0 VR±0 )

|Γ(λ1)(x, y)− Γ(λ2)(x, y)| . 〈x〉γ〈y〉γ|λ1 − λ2|
1
2
+γ|λ1|−1+, |λj| � 1, j = 1, 2.

We use (33) and (38) for the free resolvent terms. Therefore, by applying the Lipschitz

argument as in (16) and the proof of Lemma 4.6, we bound the integral by

〈t〉−
1
2
−γ〈x〉γ〈y〉γ

∫ 1

−1

(
min(|λ|, |λ− π

t
|)
)−1+

dλ . 〈t〉−
1
2
−γ〈x〉γ〈y〉γ.

�

For 1
2
≤ γ < 3

2
, we have the following lemma which we state only for M−1. We dropped

± signs since we will not rely on any cancellation between ± terms.

Lemma 4.8. Fix 1
2
≤ γ < 3

2
. Assume that |V (x)| . 〈x〉−2−2γ−. Then∣∣∣ ∫

R
e−itλχ(λ)

[
R0VR0v

∗M−1vR0VR0

]
(λ)(x, y)dλ

∣∣∣ . 〈t〉− 1
2
−γ〈x〉γ〈y〉γ.

Proof. We only need consider the case |t| > 1. Let γ0 = γ − 1
2
. After an integration by

parts, and ignoring the case when the derivative hits the cutoff χ, it suffices to prove that∣∣∣ ∫
R
e−itλχ(λ)∂λ

[
R0VR0v

∗M−1vR0VR0

]
(λ)(x, y)dλ

∣∣∣ . |t|−γ0〈x〉γ〈y〉γ.
Let R̃ := vR0VR0 as in the proof of Lemma 4.7. Since |V (x)| . 〈x〉−2−2γ−, the bound

(55) is valid. Using (56) with γ = γ0− 1
2

for γ0 ∈ (1
2
, 1) and with γ = 0 for γ0 ∈ (0, 1

2
], we

have

|R̃(λ1)(y1, y)− R̃(λ2)(y1, y)| . |λ1 − λ2|γ0
(
1 + 〈y〉γ0−

1
2

)
〈y1〉−1−

Using (33), (34), and integral estimate Lemma 9.3 (with γ = 1
2
), we have

(57) |∂λR̃(λ)(y1, y)| . |λ|0−〈y〉
1
2 〈y1〉−1−.

Finally we need a Lipschitz bound for ∂λR̃. First note that using (38) with γ = γ0 − 1
2

for γ0 ∈ (1
2
, 1) and with γ = 0 for γ0 ∈ (0, 1

2
], we have∣∣R±0 (λ1)(x, y)−R±0 (λ2)(x, y)

∣∣ . |λ1 − λ2|γ0(1 + 〈x− y〉γ0−
1
2 + |x− y|0−).

Moreover, recalling (39), and taking |λ1| ≤ |λ2| as usual, we have∣∣∂λR±0 (λ1)(x, y)− ∂λR±0 (λ2)(x, y)
∣∣ . |λ1 − λ2|γ0|λ1|−γ0−(|x− y|0− + |x− y|γ

)
.(58)
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Using these, (33), and (34), we obtain

|∂λR̃(λ1)(y1, y)− ∂λR̃(λ2)(y1, y)| . |λ1 − λ2|γ0|λ1|−γ0−

×
∫
R2

〈y1〉−1−γ−
(
|y1 − y2|−1 + |y1 − y2|γ

)
〈y2〉−2−2γ−

(
|y2 − y|−1 + |y2 − y|γ

)
dy2

. |λ1 − λ2|γ0|λ1|−γ0−〈y〉γ(1 + |y1 − y|0−)〈y1〉−1−.

Where the spatial integral is bounded by noting that |x − y|γ ≤ 〈x〉γ〈y〉γ and using

Lemma 9.3. Using these pointwise bounds we have

‖R̃(λ)(y1, y)‖L2
y1
. 1, ‖∂λR̃(λ)(y1, y)‖L2

y1
. |λ|0−〈y〉γ,

‖R̃(λ1)(y1, y)− R̃(λ2)(y1, y)‖L2
y1
. |λ1 − λ2|γ0〈y〉γ,

‖∂λR̃(λ1)(y1, y)− ∂λR̃(λ2)(y1, y)‖L2
y1
. |λ1 − λ2|γ0|λ1|−γ0−〈y〉γ.

Finally note that by Lemma 4.4, M−1 satisfies similar bounds (without x, y dependence)

as an absolutely bounded operator. Therefore, letting Γ = ∂λ
[
R0VR0v

∗M−1vR0VR0

]
,

we see that

|Γ(λ1)(x, y)− Γ(λ2)(x, y)| . |λ1 − λ2|γ0|λ1|−γ0−.

This finishes the proof using the Lipschitz argument as in (16) and the proof of Lemmas 4.6

and 4.7. �

We now prove Proposition 4.5.

Proof of Proposition 4.5. Using the expansion (52), we see that the first terms are con-

trolled by Lemma 4.6. Then it remains only to control the tail of the Born series, with the

operators M±(λ)−1. By the expansion for M±(λ)−1 in Lemma 4.4, we see that Lemma 4.7

suffices to establish the desired bound for 0 ≤ γ < 1
2
. The case 1

2
≤ γ < 3

2
is established

in Lemma 4.8. �

5. Small energy resolvent expansion when zero is not regular

We now consider the case when zero is not a regular point of the spectrum. We first

provide the necessary expansions to develop the spectral measure when there are eigen-

values and/or resonances at zero energy, then establish the dispersive estimates. We

re-emphasize here that this is the first result, to our knowledge, in which the contribu-

tion of a ‘p-wave’ resonance is controlled in a finite-rank term. Previous results in the
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Schrödinger (or wave equation) context, [30, 19, 28], have not achieved this. Even in the

weighted L2 setting, [30], any finite rank pieces had an error whose decay was only loga-

rithmically better. This argument can be modified to apply to the Schrödinger evolution

as well.

With S1 being the Riesz projection onto the kernel of T , define (T + S1)
−1 := T1. One

can see that S1T1 = T1S1 = S1. Then, we have the following variations of Lemma 4.3 and

Lemma 4.4.

Lemma 5.1. Assume that |V (x)| . 〈x〉−β. If β > 2 + 2k for some 0 < k < 1, then

M±(λ) = T + λg±(λ)vG1,1v∗ + λvG1,0v∗ + E±1 (λ),

where

‖E±1 (λ)‖HS . |λ|1+k.

Moreover, for fixed 0 ≤ γ < 1
2

and 1
2
≤ k < 1, if β > 2 + 2k, then (for |λ1| ≤ |λ2| . 1)

‖E±1 (λ1)− E±1 (λ2)‖HS . |λ1 − λ2|
1
2
+γ|λ2|

1
2
−γ+k.

Proof. The lemma immediately follows from the bounds in Lemma 3.4 noting that

E±1 (λ) = vE±0 (λ)v∗. �

Lemma 5.2. Assume that |V (x)| . 〈x〉−β and that zero is not a regular point of the

spectrum.

i) If β > 2 + 2k for some 0 < k < 1, then M±(λ) + S1 is invertible with a uniformly

bounded inverse provided that 0 < |λ| � 1, and we have

(59) (M±(λ) + S1)
−1 = T1 − λg±(λ)T1vG1,1v∗T1 − λT1vG1,0v∗T1 + E±2 (λ),

where

E±2 (λ) = O(|λ|1+k).

ii) If β > 2 + 2γ for some 0 ≤ γ < 1
2
, then for 0 < |λ1| ≤ |λ2| � 1, we have

(60) (M±(λ1) + S1)
−1 − (M±(λ2) + S1)

−1 = O
(
|λ1 − λ2|

1
2
+γ|λ2|

1
2
−γ−).

Moreover, for fixed 0 ≤ γ < 1
2

and 1
2
≤ k < 1, if β > 2+2k, then (for |λ1| ≤ |λ2| � 1)

(61) E±2 (λ1)− E±2 (λ2) = O
(
|λ1 − λ2|

1
2
+γ|λ2|

1
2
−γ+k).

All bounds above are understood in the sense of absolutely bounded operators.
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Proof. The first assertion follows from the invertibility of T + S1, (44) and a Neumann

Series computation. Recalling that T1 = (T + S1)
−1, the expansion (59) follows from

Lemma 5.1 noting that

(M±(λ) + S1)
−1 =

[
T + S1 + λg±(λ)vG1,1v∗ + λvG1,0v∗ + E±1 (λ)

]−1
=
[
I + λg±(λ)T1vG1,1v∗ + λvT1G1,0v∗ + T1E

±
1 (λ)

]−1
T1

= T1 − λg±(λ)T1vG1,1v∗T1 − λvT1G1,0v∗T1 − T1E±1 (λ)T1 +
∞∑
j=2

(−1)jΓjT1,

where Γ = λg±(λ)T1vG1,1v∗ + λvT1G1,0v∗ + T1E
±
1 (λ) = O(|λ|1−). Therefore (since k < 1),

E±2 (λ) = −T1E±1 (λ)T1 +
∞∑
j=2

(−1)jΓjT1 = O(|λ|1+k).

The proof of (60) is identical to the proof of (48). Finally (61) follows from the Lipschitz

bound for E±1 in Lemma 5.1, the bound Γ = O(|λ|1−), and by noting that the first two

terms in the definition of Γ satisfies the Lipschitz bound

|λ1 − λ2|
1
2
+γ|λ2|

1
2
−γ−.

�

To invert M±(λ) = U+vR±0 (λ2)v, for small λ, we use the following lemma (see Lemma

2.1 in [29]) repeatedly.

Lemma 5.3. Let M be a closed operator on a Hilbert space H and S a projection. Suppose

M + S has a bounded inverse. Then M has a bounded inverse if and only if

B := S − S(M + S)−1S

has a bounded inverse in SH, and in this case

M−1 = (M + S)−1 + (M + S)−1SB−1S(M + S)−1.

We apply this lemma with M = M±(λ) and S = S1. The fact that M±(λ) + S1 has a

bounded inverse in L2(R2) follows from Lemma 5.2. We also need to prove that

B± = S1 − S1(M
±(λ) + S1)

−1S1(62)
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has a bounded inverse in S1L
2(R2). We have, using (59) and the fact that S1T1 = S1,

B±(λ) = S1 − S1(M
±(λ) + S1)

−1S1

= S1 − S1

[
T1 − λg±(λ)T1vG1,1v∗T1 − λT1vG1,0v∗T1 + E±2 (λ)

]
S1

= λg±(λ)S1vG1,1v∗S1 + λS1vG1,0v∗S1 − S1E
±
2 (λ)S1.

We write:

B±(λ) = λA±(λ)− S1E
±
2 (λ)S1(63)

A±(λ) = S1v(g±(λ)G1,1 + G1,0)v∗S1(64)

The remainder of this section is devoted to inverting A±(λ) in a neighborhood of zero

under different spectral assumptions.

Proposition 5.4. Assume that |V (x)| . 〈x〉−2−. For sufficiently small λ, the operators

A±(λ) are invertible on S1L
2. Further,

A±(λ)−1 = [S2vG1,0v∗S2]
−1 + Õ1((log λ)−1),

as an operator on S1L
2. Morever

A+(λ)−1 − A−(λ)−1 = Õ1((log λ)−2).

Furthermore, if S1 = S2, we have

A±(λ)−1 = [S2vG1,0v∗S2]
−1,

which is independent of λ and the choice of sign.

We note that these operators are finite rank on L2 since S1L
2 is a finite-dimensional

subspace.

Proof. We begin by writing the projection S1 = Q ⊕ S2 where Q is orthogonal to S2.

We note that by Lemmas 7.2 and 7.5, Q corresponds to a projection onto the p-wave

resonance space. By Corollary 7.3, Q has rank at most two. We first note that when

Q = 0, the statement follows (64) and the orthogonality property that S2vG1,1 = 0. The

invertibility of the resulting operator is guaranteed by Lemma 7.6. The following lemma

implies the proposition when S2 = 0.
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Lemma 5.5. When Q 6= 0, the operator QA±(λ)Q is invertible for sufficiently small λ.

Further,

(QA±(λ)Q)−1 = Õ1((log λ)−1),

as an operator on QL2. Morever

(QA+(λ)Q)−1 − (QA−(λ)Q)−1 = Õ1((log λ)−2).

Proof. We begin by showing that QA±(λ)Q is invertible on QL2. In the case that Q has

rank one, then using (64) we can see that QA±(λ)Q is a scalar of the form

(c1g
±(λ) + c2)Q, c1 ∈ R \ {0}.

Which, by (20), suffices to show our desired results.

We now consider the case when Q has rank two. We may select an orthonormal basis

for QL2, {φ1, φ2}. We claim that G1,1v∗φ1 and G1,1v∗φ2 are linearly independent. Assume

they are not, and let ψj = −G0,0v∗φj, j = 1, 2. Then for some c,

ψ1 − cψ2 = G0,0v∗(cφ2 − φ1) =
(
G0,0 −

iα · x
2π〈x〉2

G1,1
)
v∗(cφ2 − φ1) ∈ L2

by the proof of Lemma 7.1. By Lemma 7.2, ψ(x) = −iα·x
2π〈x〉2G1,1v

∗φ + Γ2 with Γ2 ∈ L2.

Hence {φ1, φ2} can only span a one-dimensional subspace of QL2. This proves our claim.

We now write with respect to the basis {φ1, φ2}:

QA±(λ)Q = g±(λ)

[
|G1,1v∗φ1|2 〈G1,1v∗φ1,G1,1v∗φ2〉C2

〈G1,1v∗φ1,G1,1v∗φ2〉C2 |G1,1v∗φ2|2

]
+ A1,

where A1 is a 2 × 2 matrix of constants given by the contributions of φivG1,0v∗φj. Since

G1,1v∗φ1 and G1,1v∗φ2 are linearly independent, the first matrix above is invertible, and

hence, for sufficiently small λ, QA±(λ)Q is invertible. Moreover the entries of its inverse

are rational functions in log(λ), and the degree of the denominator is at least one more

than the degree of the numerator. In particular, they are of the form Õ1(
1

log(λ)
).

The final claim follows from the resolvent identity and (20), since (A+ − A−)(λ) is

independent of λ.

�

We now consider the case when both Q,S2 6= 0. We employ the Feshbach formula, see

for example Lemma 2.3 in [29]. If A(λ) =

[
a11 a12

a21 a22

]
, the invertibility of A(λ) follows



26 M. BURAK ERDOĞAN, MICHAEL GOLDBERG, WILLIAM R. GREEN

if both a22 is invertible and a := (a11 − a12a−122 a21)
−1 exists. Then, we have

A(λ)−1 =

[
a −aa12a−122

−a−122 a21a a−122 a21aa12a
−1
22 + a−122

]
.(65)

In our case a22 = S2vG1,0v∗S2 which is invertible by Lemma 7.6. Moreover,

a =
(
QA±(λ)Q−QvG1,0v∗S2(S2vG1,0v∗S2)

−1S2vG1,0v∗Q
)−1

exists for sufficiently small λ since QA±(λ)Q is invertible by Lemma 5.5, while the second

summand is a λ independent 2× 2 matrix.

�

Lemma 5.6. Assume that |V (x)| . 〈x〉−β and that zero is not a regular point of the

spectrum. If β > 2 + 2k for some 0 < k < 1, then for 0 < |λ| � 1, we have

B±(λ)−1 =
1

λ
A±(λ)−1 + E±3 (λ),

where E±3 (λ) = O(|λ|−1+k) as an absolutely bounded operator.

Moreover, for fixed 0 ≤ γ < 1
2

and 1
2
≤ k < 1, if β > 2 + 2k, then (for |λ1| ≤ |λ2| � 1)

(66) E±3 (λ1)− E±3 (λ2) = O
(
|λ1 − λ2|

1
2
+γ|λ1|−

3
2
−γ+k).

Proof. Using (63), Proposition 5.4, and Lemma 5.2, we have

B±(λ)−1 =
1

λ

[
I − 1

λ
A±(λ)−1S1E

±
2 (λ)S1

]−1
A±(λ)−1

=
1

λ
A±(λ)−1 +

1

λ

∞∑
j=1

( 1
λ
A±(λ)−1S1E

±
2 (λ)S1)

jA±(λ)−1.

The series converges since A±(λ)−1 = O(1) and E±2 (λ) = O(|λ|1+k) by Proposition 5.4

and Lemma 5.2 respectively. Moreover, we have

E±3 (λ) =
1

λ

∞∑
j=1

( 1
λ
A±(λ)−1S1E

±
2 (λ)S1)

jA±(λ)−1 = O(|λ|−1+k).

This also implies the Lipschitz bound when |λ1 − λ2| & |λ2|. The Lipschitz bound when

|λ1 − λ2| � |λ2| ≈ |λ1| follows by noting that in this case

(67) A±(λ1)
−1 − A±(λ2)

−1 = O(|λ1 − λ2||λ1|−1) = O(|λ1 − λ2|
1
2
+γ|λ1|−

1
2
−γ),

|λ−22 − λ−21 | . |λ1 − λ2|
1
2
+γ|λ1|−

5
2
−γ,

and by using the bounds in Lemma 5.2 for E±2 (λ). �
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We are now ready to obtain a suitable expansion for M±(λ)−1 when zero is not reg-

ular. Note that Proposition 5.4 and its proof gives detailed expansions for A±(λ)−1, in

particular, the projection Q corresponds to the contribution of p-wave resonances and the

operator [S2vG1,0v∗S2]
−1 to the threshold eigenspace, see Lemma 7.7 below.

Lemma 5.7. Under the hypothesis of Lemma 5.6, for 0 < |λ| � 1, we have

M±(λ)−1 =
1

λ
S1A

±(λ)−1S1 + E±4 (λ),

where E±4 (λ) satisfies the same bounds as E±3 (λ) in Lemma 5.6.

Proof. Using Lemma 5.3 with M = M±(λ) and S = S1, and recalling that T1S1 = S1T1 =

S1, writing (M±(λ) + S1)
−1 = [(M±(λ) + S1)

−1 − T1] + T1, we have

M±(λ)−1 = (M±(λ) + S1)
−1 + (M±(λ) + S1)

−1S1B
−1
± S1(M

±(λ) + S1)
−1

= S1B
−1
± S1 + (M±(λ) + S1)

−1 + [(M±(λ) + S1)
−1 − T1]S1B

−1
± S1(M

±(λ) + S1)
−1

+ S1B
−1
± S1[(M

±(λ) + S1)
−1 − T1].

Using Lemma 5.6, we have

M±(λ)−1 =
1

λ
S1A

±(λ)−1S1 + E±4 (λ),

where

E±4 (λ) = S1E
±
3 (λ)S1 +(M±(λ)+S1)

−1 +[(M±(λ)+S1)
−1−T1]S1B

−1
± S1(M

±(λ)+S1)
−1

+ S1B
−1
± S1[(M

±(λ) + S1)
−1 − T1].

Since by Lemma 5.2 the operator (M±(λ) + S1)
−1 satisfies better Lipschitz bounds than

E±3 (λ), and since the last two terms are similar, we concentrate on the term

[(M±(λ) + S1)
−1 − T1]S1B

−1
± S1(M

±(λ) + S1)
−1.

By Lemma 5.2, specifically(59), we have (M±(λ) + S1)
−1 = O(1), Combining this with

(20) we see that (M±(λ) + S1)
−1 − T1 = O(|λ|1−). Also noting that B−1± = O(|λ|−1) by

Lemma 5.6, we have

[(M±(λ) + S1)
−1 − T1]S1B

−1
± S1(M

±(λ) + S1)
−1 = O(|λ|0−) = O(|λ|−1+k), 0 < k < 1.
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The Lipschitz bound follows by using the bounds above and in addition the bounds in

Lemma 5.2 for (M±(λ) + S1)
−1, and by noting that

B±(λ1)
−1 −B±(λ2)

−1 =
1

λ1
A±(λ1)

−1 − 1

λ2
A±(λ2)

−1 + E±3 (λ1)− E±3 (λ2).

The contribution of E±3 is controlled by the bound in Lemma 5.6, specifically (66). For

the contribution of the remaining terms, we note

1

λ1
A±(λ1)

−1 − 1

λ2
A±(λ2)

−1 =

(
1

λ1
− 1

λ2

)
A±(λ1)

−1 − 1

λ2

(
A±(λ2)

−1 − A±(λ1)
−1
)
.

Then (67) suffices to control the second term, while the first term is controlled by using

(A±(λ))−1 = O(1) by Proposition 5.4 and the simple bound

|λ−11 − λ−12 | . |λ1 − λ2|
1
2
+γ|λ1|−

3
2
−γ.

�

6. Small energy dispersive estimates when zero is not regular

In this section we study the small energy portion of the Stone’s formula, (7), when zero

is not regular: ∫ ∞
−∞

e−itλχ(λ)[R+
V −R

−
V ](λ)(x, y) dλ.

In particular, we prove the following result.

Proposition 6.1. Fix 0 ≤ γ < 1
2
. Assume that |V (x)| . 〈x〉−β−. If zero is not regular

and β > 3 + 2γ, there is a finite-rank operator Ft with

sup
x,y

∣∣∣∣∫ ∞
−∞

e−itλχ(λ)[R+
V −R

−
V ](λ)(x, y) dλ− Ft(x, y)

∣∣∣∣ . 〈t〉− 1
2
−γ〈x〉γ〈y〉γ,(68)

where supt,x,y |Ft(x, y)| . 1, and if |t| > 2, supx,y |Ft(x, y)| . (log |t|)−1. Furthermore, if

there is an eigenvalue only at zero, the bound (68) remains valid with Ft = 0.

In fact, when zero is not regular we explicitly construct the finite rank operator Ft, see

(70) below.

Proof of Proposition 6.1. Recall (52). As in the regular case, Lemma 4.6 suffices to control

the first few terms arising in (52), hence we turn our attention to the tail. Recall that by

Lemma 5.7 we have

M±(λ)−1 =
1

λ
S1A

±(λ)−1S1 + E±4 (λ).
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The contribution of the second term in the Stone’s formula is taken care of by Lemma 4.7

by taking k = 1
2

+ γ+ in the error bounds for E±4 (λ). This requires that β > 3 + 2γ.

It remains to consider the contribution of

1

λ
R±0 VR±0 v∗S1A

±(λ)−1S1vR±0 VR±0 .

If we replace at least one of the free resolvents with R±0 − G0,0, we obtain further λ

smallness which allows us to obtain the desired 〈t〉− 1
2 bound with minor modifications of

the proof of Lemma 4.7. In particular, we note that

1

λ
R±0 VR±0 v∗S1A

±(λ)−1S1vR±0 VR±0

=
1

λ
R±0 V G0,0v∗S1A

±(λ)−1S1vR±0 VR±0 +
1

λ
R±0 V (R±0 − G0,0)v∗S1A

±(λ)−1S1vR±0 VR±0 .

Further,

1

λ
R±0 V G0,0v∗S1A

±(λ)−1S1vR±0 VR±0

=
1

λ
R±0 V G0,0v∗S1A

±(λ)−1S1vG0,0VR±0 +
1

λ
R±0 V G0,0v∗S1A

±(λ)−1S1v(R±0 − G0,0)VR±0 .

Iterating this process, we may write

(69)
1

λ
R±0 VR±0 v∗S1A

±(λ)−1S1vR±0 VR±0

=
1

λ
G0,0V G0,0v∗S1A

±(λ)−1S1vG0,0V G0,0 + Ex,y(λ).

We first consider the contribution of the first term to the Stone’s formula. When there

is a p-wave resonance at zero, when S1 − S2 6= 0, using Proposition 5.4, the ± difference

easily yields a finite rank term with logarithmic decay in time since∫
R
e−itλχ(λ)Õ1

( 1

λ log2 λ

)
dλ

satisfies the desired bound by Lemma 9.1.

So when there is a ‘p-wave’ resonance at zero, we can explicitly construct the operator

Ft by

(70) Ft :=

∫ ∞
−∞

e−itλχ(λ)G0,0V G0,0v∗S1

(
A+(λ)−1 − A−(λ)−1

λ

)
S1vG0,0V G0,0 dλ.
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In the eigenvalue only case, when S1 = S2 6= 0, by Proposition 5.4 the leading term in

(69) disappears by ± cancellation since A±(λ)−1 is independent of the choice of sign in

this case. Therefore Ft = 0.

For the terms in Ex,y(λ), we have the following variant of Lemma 4.7 (we drop the ±
signs since we do not rely on cancellation):

Lemma 6.2. Fix 0 ≤ γ < 1
2
. Assume that |V (x)| . 〈x〉−2−2γ−. Let T (λ) be an absolutely

bounded operator satisfying (for |λ|, |λ1|, |λ2| . 1 with |λ1| ≤ |λ2|)∥∥|T (λ)|
∥∥
L2→L2 . |λ|−1,∥∥|T (λ1)− T (λ2)|

∥∥
L2→L2 . |λ1|−

3
2
−γ|λ1 − λ2|

1
2
+γ.

Then ∣∣∣ ∫
R
e−itλχ(λ)

[
R1VR2v

∗TvR3VR4

]
(λ)(x, y)dλ

∣∣∣ . 〈t〉− 1
2
−γ〈x〉γ〈y〉γ,

where Rj = R0, G0,0, or R0 − G0,0, j = 1, 2, 3, 4, and at least one of them is R0 − G0,0.

Note that the hypothesis is satisfied by the mean value theorem if T (λ) = Õ1(λ
−1) as

an absolutely bounded operator, in particular when T (λ) = 1
λ
A±(λ)−1.

Proof. Let R̃ := vR3VR4. Since each R0, G0,0, and R0 − G0,0 satisfies the bounds (33)

and (38), the operator R̃ satisfies the bounds (55) and (56) in the proof of Lemma 4.7.

In particular, the L2
y1

norm of R̃(λ)(y1, y) is bounded in y and λ, and the L2
y1

norm of

R̃(λ1)(y1, y)− R̃(λ2)(y1, y) is bounded by 〈y〉γ|λ1 − λ2|
1
2
+γ|λ2|

1
2
−γ−.

If R3 or R4 is equal to R0 − G0,0. Then, by (33),

R0(x, y)− G0,0(x, y) = O(|λ|1−(1 + |x− y|0−).

Therefore R̃ satisfies the following improved pointwise bound

(71) |R̃(λ)(y1, y)| . |λ|1−(1 + |y1 − y|0−)〈y1〉−1−.

In particular, the L2
y1

norm of R̃(λ)(y1, y) is bounded by |λ|1−.

Using these bounds and the hypothesis for T , we see that (with Γ :=

R1VR2v
∗TvR3VR4)

|Γ(λ)(x, y)| . |λ|0−.
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This implies the uniform bound when t is small. Also using this in the case |λ1−λ2| & |λ2|
we obtain

|Γ(λ1)− Γ(λ2)| . |λ1 − λ2|
1
2
+γ|λ1|−

1
2
−γ−

When |λ1 − λ2| � |λ2| ≈ |λ1|, we estimate [Γ(λ1)− Γ(λ2)](x, y) by

|λ1|1−|λ1|−
3
2
−γ|λ1 − λ2|

1
2
+γ + |λ1 − λ2|

1
2
+γ|λ1|

1
2
−γ−〈x〉γ〈y〉γ|λ1|−1

. |λ1 − λ2|
1
2
+γ|λ1|−

1
2
−γ−〈x〉γ〈y〉γ.

The first summand above corresponds to the case when the difference is on T and the

second summand corresponds to the remaining cases. Combining these bounds for 0 ≤
γ < 1

2
we have

|[Γ(λ1)− Γ(λ2)](x, y)| . 〈x〉γ〈y〉γ|λ1 − λ2|
1
2
+γ|λ1|−1+, |λj| � 1, j = 1, 2.

Therefore, by applying the Lipschitz argument as in (16), we bound the integral by

〈t〉− 1
2
−γ〈x〉γ〈y〉γ. �

This finishes the proof of Proposition 6.1. �

7. Threshold characterization

The characterization of the threshold is similar to the characterization for the massive

case in [21]. See [23] for the three dimensional threshold characterization. These results

have roots in the characterizations for Schrödinger operators may be found in [24, 19, 16].

Lemma 7.1. Assume that |V (x)| . 〈x〉−β for some β > 2. If φ ∈ ker(T ), then φ = Uvψ

with ψ a distributional solution to Hψ = 0 and ψ ∈ Lp(R2) for all p > 2.

Proof. Take φ ∈ ker(T ), φ ∈ L2. Then

0 = Tφ = Uφ+ vG0,0v∗φ = 0 ⇒ φ = −UvG0,0v∗φ.

Define ψ := −G0,0v∗φ, then φ = Uvψ. Now, with H = D0 + V = −iα · ∇+ V ,

Hψ = (−iα · ∇+ V )ψ = −iα · ∇ψ + v∗Uvψ = iα · ∇(G0,0v∗φ) + v∗φ

Here, recalling (28) and (3), we have

iα · ∇(G0,0v∗φ) = iα · ∇(−iα · ∇G0v
∗φ) = ∆(−∆)−1v∗φ = −v∗φ
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distributionally. So,

Hψ = iα · ∇(G0,0v∗φ) + v∗φ = −v∗φ+ v∗φ = 0.

That is, if φ ∈ ker(T ) we have Hψ = 0. Now, to show that ψ ∈ Lp, we have ψ = −G0,0v∗φ
with φ ∈ L2. We can bound |G0,0(x, y)| . |x−y|−1 to employ a fractional integral operator

argument. So that,

‖ψ‖q = ‖G0,0v∗φ‖q .
∥∥∥∥∫

R2

〈y〉−1−

|x− y|
|φ(y)| dy

∥∥∥∥
q

. ‖φ‖2

for 2 < q <∞. Furthermore, since φ = Uvψ we have ψ = −G0,0V ψ, and

|ψ| ≤ |G0,0V ψ| .
∫
R2

〈y〉−2−

|x− y|
|ψ(y)| dy . ‖ψ‖3‖|x− ·|−1〈·〉−2−‖ 3

2
. 1.

Thus, ψ ∈ Lp for all p > 2.

�

Lemma 7.2. Assume that |V (x)| . 〈x〉−β for some β > 2. If φ = Uvψ ∈ S1L
2 then

ψ(x) =
−iα · x
2π〈x〉2

G1,1v∗φ+ Γ2

where Γ2 ∈ L2 ∩ L∞.

Proof. By the last lemma, we have ψ ∈ L∞. We recall that ψ = −G0,0v∗φ and the kernel

of G1,1 is 1, so

ψ(x) = − i

2π

∫
R2

α · (x− y)

|x− y|2
v∗(y)φ(y) dy

= − i

2π

∫
R2

[
α · (x− y)

|x− y|2
− α · x
〈x〉2

]
v∗(y)φ(y) dy − iα · x

2π〈x〉2
G1,1v∗φ.

The first term is in L2 (see Lemma 7.3 in [21]). Combining this with ψ ∈ L∞ finishes the

proof. We note that the assumption that β > 2 suffices here, the logarithmic terms in

the massive case considered in [21] required further decay of the potential. These terms

do not occur in the massless case, specifically we need only (68) in [21] for which β > 2

is sufficient.

�

Corollary 7.3. The rank of S1 is at most two plus the dimension of the eigenspace at

zero.
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We note that the at most two dimensional space of resonances correspond to the p-wave

resonances in the massive Dirac, [21], and Schrödinger [19] operators. We again note that

there are no ‘s-wave’ resonances in the massless case.

Lemma 7.4. Assume that |V (x)| . 〈x〉−β for some β > 2. If Hψ = 0 with ψ ∈
L2 + ∩p∈(2,∞]L

p, then φ = Uvψ ∈ S1L
2, i.e. Tφ = 0.

Proof. Using Hψ = 0, we have iα · ∇ψ = V ψ = v∗φ. We first show that ψ = −G0,0v∗φ.

Since φ = Uvψ ∈ L2, we have that v∗φ ∈ L1. Recalling (28), G0,0 = −iα · ∇G0, so

−iα · ∇
[
ψ + G0,0v∗φ

]
= −iα · ∇ψ + ∆G0v

∗φ = v∗φ− v∗φ = 0.

Thus,

−iα · ∇
[
ψ + G0,0v∗φ

]
= 0 ⇒ ψ + G0,0v∗φ = (c1, c2)

T .

Since ψ ∈ L2 + ∩p∈(2,∞]L
p and G0,0v∗φ ∈ Lp for all p > 2 by the proof of Lemma 7.1, we

have (c1, c2)
T ∈ L2 + ∩p∈(2,∞]L

p. Therefore, c1 = c2 = 0, and ψ = −G0,0v∗φ as desired.

Next, to show Tφ = 0, we note that Uφ = U2vψ = vψ. Also recalling that T =

U + vG0,0v∗ and ψ = −G0,0v∗φ, we have

Tφ = Uφ+ vG0,0v∗φ = vψ − vψ = 0.

�

Recall that S2 is the projection onto the kernel of S1vG1,1v∗S1. We have the following

classification for S2L
2:

Lemma 7.5. Assume that |V (x)| . 〈x〉−β for some β > 2. Fix φ = Uvψ ∈ S1L
2. Then

φ ∈ S2L
2 if and only if ψ ∈ L2.

Proof. By Lemma 7.2, ψ ∈ L2 if and only if G1,1v∗φ = 0, which is equivalent to φ being

in the kernel of S1vG1,1v∗S1.

�

We now prove that S2vG1,0v∗S2 is always invertible on S2L
2.

Lemma 7.6. Assume that |V (x)| . 〈x〉−β for some β > 2. For φ ∈ S2L
2, we have the

identity

(72) 〈G0,0v∗φ,G0,0v∗φ〉 = 〈v∗φ,G1,0v∗φ〉.
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Furthermore, the kernel of S2vG1,0v∗S2 is trivial.

Proof. First note that by Lemma 7.5, we have ψ = −G0,0v∗φ ∈ L2. On the Fourier side,

〈G0,0v∗φ,G0,0v∗φ〉 =

∫
R2

1

|ξ|4

〈(
0 ξ

ξ 0

)
v̂∗φ,

(
0 ξ

ξ 0

)
v̂∗φ

〉
C2

dξ

=

∫
R2

1

|ξ|2
〈v̂∗φ, v̂∗φ〉C2 dξ.

Using the expansion R0(−λ2) = g(λ)G1,1 +G0 +O(λ0+|x−y|0+) and G1,1v∗φ = 0, we have

〈v∗φ,G1,0v∗φ〉 = 〈v∗φ,G0v
∗φ〉 = lim

λ→0
〈v∗φ,R0(−λ2)v∗φ〉

= lim
λ→0

∫
R2

1

|ξ|2 + λ2
〈v̂∗φ, v̂∗φ〉C2 dξ =

∫
R2

1

|ξ|2
〈v̂∗φ, v̂∗φ〉C2 dξ

by monotone convergence theorem. This implies the identity (72).

Take φ in the kernel of S2vG1,0v∗S2, then by the identity (72),

‖ψ‖2L2 = 〈G0,0v∗φ,G0,0v∗φ〉 = 0.

Thus, ψ = 0 and φ = Uvψ = 0. �

Lemma 7.7. The projection onto the zero energy eigenspace is

P0 = G0,0vS2[S2vG1,0v∗S2]
−1S2v

∗G0,0.

The proof follows along the lines of Lemma 7.10 in [21]. For the sake of brevity, we

omit the proof.

8. High Energy Dispersive estimates

We now provide a proof of Theorem 1.2, the high energy dispersive estimate. The

theorem follows from

Proposition 8.1. Under the hypotheses of Theorem 1.2, we have the bound

(73) sup
x,y

∣∣∣∣ ∫
R
e−itλλ−2−χ̃(λ)[R+

V −R
−
V ](λ)(x, y) dλ

∣∣∣∣ . 〈t〉− 1
2 ,

provided |V (x)| . 〈x〉−2−. Furthermore, for 0 ≤ γ ≤ 3
2

we have∣∣∣∣ ∫
R
e−itλλ−2−χ̃(λ)[R+

V −R
−
V ](λ)(x, y) dλ

∣∣∣∣ . 〈x〉γ〈y〉γ〈t〉− 1
2
−γ,

provided |V (x)| . 〈x〉−β for some β > min(2 + 2γ, 3).
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We employ the resolvent identity twice to write

(74) R±V (λ) = R±0 (λ)−R±0 (λ)VR±0 (λ) +R±0 (λ)VR±V (λ)VR±0 (λ).

By virtue of Theorem 2.1, we need only bound the second and third summands.

Lemma 8.2. The contribution of the second term in (74) to (73) satisfies the decay

bounds in Proposition 8.1.

Proof. We write the free resolvents as R±0 (λ)(x, y) = R±L(λ|x− y|) +R±H(λ|x− y|), where

R±L(λ|x − y|) = χ(λ|x − y|)R±0 (λ|x − y|) and R±H(λ|x − y|) = χ̃(λ|x − y|)R±0 (λ|x − y|).
We consider the contributions of terms with at least one instance of R±H , such as

(75)

∫
R

∫
R2

e−itλλ−2−χ̃(λ)[R±L(λ|x− x1|) +R±H(λ|x− x1|)]V (x1)R±H(λ|x1 − y|) dx1dλ,

and the two terms with only the low-energy part of the resolvents,∫
R

∫
R2

e−itλλ−2−χ̃(λ)[R+
L(λ|x−x1|)R+

L(λ|x1−y|)−R−L(λ|x−x1|)R−L(λ|x1−y|)]V (x1) dx1dλ.

That is, we need only use the ‘+/-’ on the ‘low-low’ term. We consider the ‘low-low’ term

first. By symmetry, we need only consider

(76)

∫
R

∫
R2

e−itλλ−2−χ̃(λ)[R+
L(λ|x− x1|)−R−L(λ|x− x1|)]V (x1)R−L(λ|x1 − y|) dx1dλ.

From (9) and the support condition λ|x− x1| � 1, we see that

|∂kλ[R+
L(λ|x− x1|)−R−L(λ|x− x1|)]| . λ1−k, k = 0, 1, 2.

While from Lemma 3.2 and the support condition, we see that

|R±L(λ|x1 − y|)| .
1

|x1 − y|
, |∂λR±L(λ|x1 − y|)| .

1

(λ|x1 − y|)0+
,

|∂2λR±L(λ|x1 − y|)| .
1

λ(λ|x1 − y|)0+
,

which implies that

|(76)| .
∫
R

∫
R2

λ−1−χ̃(λ)
|V (x1)|
|x1 − y|

dx1dλ.

We can see that the integral is bounded uniformly in x and y by Lemma 9.2. For |t| > 1,

by a single integration by parts, one has

|(76)| . 1

|t|

∫
R

∫
R2

λ−2−χ̃(λ)|V (x1)|
(

1

|x1 − y|
+

λ

(λ|x− x1|)0+

)
dx1dλ .

1

|t|
.
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There are no boundary terms due to the cut-off. While integrating by parts twice yields

|(76)| . 1

t2

∫
R
λ−2−χ̃(λ)|V (x1)|

1

λ|x1 − y|
dx1dλ .

1

t2
.

We now turn to the contribution of (75), which necessitates spatial weights for faster time

decay. We have to control two terms. We first look at the ‘low-high’ interaction:

(77)

∫
R

∫
R2

e−itλ±iλ|x1−y|λ−2−χ̃(λ)R±L(λ|x− x1|)V (x1)ω̃±(λ|x1 − y|) dx1dλ.

Using (36), we see that

|(77)| .
∫
R

∫
R2

λ−
3
2
−χ̃(λ)

|V (x1)|
|x− x1||x1 − y|

1
2

dx1dλ . 1.

The spatial integral is bounded by Lemma 9.2 with k = 1 and ` = 1
2
.

For t > 1, without loss of generality we work with the ‘+’ case. We consider two

subcases based on the size of t− |x1− y|. In the case that |t− |x1− y|| ≤ t
2
, we have that

|x1 − y| & t. Using (36) we have |ω̃±(λ|x1 − y|)| . λ
1
2 t−

1
2 . Then,

|(77)| . t−
1
2

∫
R

∫
R2

λ−
3
2
−χ̃(λ)

|V (x1)|
|x− x1|

dx1dλ . t−
1
2 .

Here the spatial integrals are controlled by Lemma 9.2. At the cost of spatial weights,

one may attain faster time decay. Furthermore, since |x1 − y| & t, for γ > 0 we have

1 .
|x1 − y|γ

tγ
.
〈x1〉γ〈y〉γ

tγ
.

Thus,

|(77)| . t−
1
2

∫
R

∫
R2

λ−
3
2
−χ̃(λ)

|V (x1)|
|x− x1|

dx1dλ

. t−
1
2
−γ〈y〉γ

∫
R

∫
R2

λ−
3
2
−χ̃(λ)

|V (x1)|〈x1〉γ

|x− x1|
dx1dλ . t−

1
2
−γ〈y〉γ.

Provided V decays sufficiently, Lemma 9.2 controls the spatial integrals.

On the other hand, if |t − |x1 − y|| ≥ t
2

we integrate by parts twice. There are no

boundary terms due to the support of the cut-off, and we see

|(77)| . 1

(t− |x1 − y|)2

∫
R

∫
R2

∣∣∂2λ[λ−2−χ̃(λ)R±L(λ|x− x1|)V (x1)ω̃±(λ|x1 − y|)
]∣∣ dx1dλ

.
1

t2

∫
R

∫
R2

λ−
3
2
−χ̃(λ)

|V (x1)|
|x1 − x||y − x1|

1
2

dx1dλ .
1

t2
.
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The final term to consider is the ‘high-high’ interaction in (75).

(78)

∫
R

∫
R2

e−itλ±iλ(|x−x1|+|x1−y|)λ−2−χ̃(λ)ω̃±(λ|x− x1|)V (x1)ω±(λ|x1 − y|) dx1dλ

We consider the ‘+’ case. The integral is bounded in t as before. For t > 1, first we

consider when |t−|x−x1|−|x1−y|| ≤ t
2
. In this case we have that max{|x−x1|, |x1−y|} &

t. The analysis then proceeds as in the bounds for (77) in the analogous case.

Finally, if |t− |x− x1| − |x1 − y|| ≥ t
2

we may integrate by parts twice to obtain

|(78)| . 1

(t− |x− x1| − |x1 − y|)2

∫
R

∫
R2

∣∣∂2λ[λ−2−ω̃±(λ|x−x1|)V (x1)ω±(λ|x1−y|)]
∣∣ dx1dλ

.
1

t2

∫
R

∫
R2

λ−3−
|V (x1)|

|x− x1|
1
2 |x1 − y|

1
2

dx1dλ . t−2.

This finishes the proof.

�

Lemma 8.3. The contribution of the third term in (74) to (73) satisfies the decay bounds

in Proposition 8.1.

Proof. We drop the ± signs since one can not use the ± cancellation in this case, and we

consider only the ‘+’ case.

Under the hypotheses of Theorem 1.2, we have the limiting absorption principle

sup
λ>0
‖∂kλR±V (λ)‖L2,σ+k→L2,−σ−k . 1, σ >

1

2
, k = 0, 1, 2,

see [17]. The main obstacle at the moment is that R0(λ)(x, ·) is not locally in L2 due to

the 1
|x−·| singularity in RL. We write

R0VRV VR0 = RLVRV VRL +RHVRV VRL +RLVRV VRH +RHVRV VRH .

Now, using the resolvent identity on RV for terms involving RL we have

(79) R0VRV VR0

= RLV [R0 −R0VR0 +R0VRV VR0]VRL +RHV [R0 −RV VR0]VRL

+RLV [R0 −R0VRV ]VRH +RHVRV VRH .

The summands that do not contain RV follow roughly the same argument as in the

previous lemma. Cancellation between terms (as in (76)) is not needed even at low
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energy because the iterated integral
∫∫

R4

V (x1)V (x2)
|x−x1||x1−x2||x2−y| dx1dx2 is bounded uniformly in

x and y.

We consider first the contribution of the final term in (79):

(80)

∫
R

e−itλχ̃(λ)

λ2+
RHVRV VRH(λ)(x, y) dλ

=

∫
R5

e−iλ(t−|y−x1|−|x2−x|)χ̃(λ)

λ2+
ω±(λ|x− x1|)[VRV V ](x1, x2)ω±(λ|x2 − y|) dx1dx2dλ.

The boundedness of this integral follows from the bound in (36):

|(80)| .
∫
R

χ̃(λ)

λ2+
‖ω+(λ|x− ·|)V (·)‖

L2, 12+‖RV ‖L2, 12+→L2,− 1
2−
‖ω+(λ| · −y|)V (·)‖

L2, 12+dλ

.
∫
R

χ̃(λ)

λ1+
dλ . 1.

To show the time decay, we do an analysis as in the proof of the ‘high-high’ term in

Lemma 8.2. Let ψ1, ψ2 be a partition of unity such that ψ1(z) + ψ2(z) = 1 with ψ2

supported on |z| & 1 and ψ1 on |z| � 1. Using (36) we see that

‖ψ2(|x− x1|/t)ω+(λ|x− x1|)V (x1)‖
L
2, 12+
x1

. λ
1
2 t−

1
2

‖ω+(λ|x2 − y|)V (x2)‖
L
2, 12+
x2

. λ
1
2 .

Also using the limiting absorption principle, we estimate (80) in this case by

t−
1
2

∫
R

χ̃(λ)

λ1+
dλ . t−

1
2 .

To obtain the faster decay, note that for any γ ≥ 0,

‖ψ2(|x− x1|/t)ω+(λ|x− x1|)V (x1)‖
L
2, 12+
x1

. ‖ψ2(|x− x1|/t)
(
|x− x1|

t

)γ
ω+(λ|x− x1|)V (x1)‖

L
2, 12+
x1

. λ
1
2 〈x〉γt−

1
2
−γ.

The case ψ1(|x − x1|/t)ψ2(|x2 − y|/t) is treated similarly. It remains to consider the

contribution of ψ1(|x−x1|/t)ψ1(|x2− y|/t), which implies that t− |x−x1| − |x2− y| ≥ t
2
.

Therefore, we can integrate by parts twice to obtain (with ω1(λ, t, |x − x1|) := ψ1(|x −
x1|/t)ω+(λ|x− x1|))
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|(80)| . 1

t2

∫
R

∣∣∣∣ ∫
R4

∂2λ
( χ̃(λ)

λ2+
ω1(λ, t, |x− x1|)[VRV V ](x1, x2)ω1(λ, t, |x2 − y|)

)
dx1dx2

∣∣∣∣ dλ
.

1

t2

∫
R
λ−1−χ̃(λ)

2∑
`=0

∥∥∥∥V (x1)〈x1〉−
1
2
+`+

|x− x1|
1
2

∥∥∥∥
L2
x1

‖∂`λRV ‖L2, 12+`+→L2,− 1
2−`−

×
∥∥∥∥V (x2)〈x2〉−

1
2
+`+

|x2 − y|
1
2

∥∥∥∥
L2
x2

dλ .
1

t2
.

We turn now to a ‘low-low’ interaction term in (79):∫
R
e−itλλ−2−χ̃(λ)RLVR0VRV VR0VRL(λ) dλ(81)

For the inner resolvents we use the following bounds for λ & 1, which are not sharp but

suffice for our purposes∣∣∂kλR0(λ)(x, y)
∣∣ . λ

1
2

(
1

|x− y|
+ |x− y|k−

1
2

)
, k = 0, 1, 2

The boundedness and time decay follows from the limiting absorption principle and the

observation that

‖∂kλRLVR0V (x, ·)‖
L2, 12+ . λ

1
2 .

The remaining terms in (79) can be treated similarly. �

9. Integral Estimates

Finally, we provide proof of the integral estimates that are used throughout the paper.

We first provide the time decay estimate.

Lemma 9.1. We have the bound∣∣∣∣ ∫
R
e−itλχ(λ)Õ1

(
1

λ log2 λ

)
dλ

∣∣∣∣ .
{

1 for all t,

(log |t|)−1 |t| > 2.

Proof. The boundedness of the integral follows from the integrability of (λ log2 λ)−1 on

the support of χ. The large |t| decay follows by dividing the integral into |λ| < |t|−1 and

integrating by parts when |λ| ≥ |t|−1, see Lemma 3.2 in [16]. �

Now, we catalog the spatial integral estimates we use. The first bound is a special case

of Lemma 6.3 in [18].
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Lemma 9.2. For 0 ≤ k, ` < 2, β > 0 so that k + `+ β ≥ 2 and k + ` 6= 2,∫
R2

〈x1〉−β−

|x− x1|k|x1 − y|`
dx1 .

(
1

|x− y|

)max{0,k+`−2}

.

We also state the following corollaries:

Lemma 9.3. For any γ ≥ 0, we have∫
R2

(|x− y1|0− + 〈x− y1〉γ)〈y1〉−2−2γ−(|y1 − y|γ + |y1 − y|−1)dy1 . 〈x〉γ〈y〉γ.

Lemma 9.4. The following integral bound holds∫
R2

(
1 + |y1 − y2|−1

)
〈y2〉−2−

(
1 + |y2 − y|−1

)
dy2 .

(
1 + |y1 − y|0−

)
.

Proof. The proof follows using Lemma 9.2 provided we show∫
R2

〈y2〉−2−

|y1 − y2||y2 − y|
dy2 . 1 + |y1 − y|0−.

We note that

1

|y1 − y2||y2 − y|
.

1

|y1 − y2||y2 − y|1+
+

1

|y1 − y2||y2 − y|1−
,

and Lemma 9.2 finishes the proof.

�
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