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ON THE ONE DIMENSIONAL DIRAC EQUATION WITH POTENTIAL

M. BURAK ERDOĞAN AND WILLIAM R. GREEN

Abstract. We investigate L1 → L∞ dispersive estimates for the one dimensional Dirac equation with a

potential. In particular, we show that the Dirac evolution satisfies the natural t−
1
2 decay rate, which may

be improved to t−
3
2 at the cost of spatial weights when the thresholds are regular. We classify the structure

of threshold obstructions, showing that there is at most a one dimensional space at each threshold. We

show that, in the presence of a threshold resonance, the Dirac evolution satisfies the natural decay rate, and

satisfies the faster weighted bound except for a piece of rank at most two, one per threshold. Further, we

prove high energy dispersive bounds that are near optimal with respect to the required smoothness of the

initial data. To do so we use a variant of a high energy argument that was originally developed to study

Kato smoothing estimates for magnetic Schrödinger operators. This method has never been used before

to obtain L1 → L∞ estimates. As a consequence of our analysis we prove a uniform limiting absorption

principle, Strichartz estimates and prove the existence of an eigenvalue free region for the one dimensional

Dirac operator with a non-self-adjoint potential.

1. Introduction

We consider the linear Dirac equations with potential, in one spatial dimension

i∂tψ(x, t) = (Dm + V (x))ψ(x, t), ψ(x, 0) = ψ0(x).(1)

Here ψ(x, t) ∈ C2 when the spatial variable x ∈ R. The free Dirac operator Dm is defined by

Dm = iα∂x + βm = i

−1 0

0 1

 ∂x +m

0 1

1 0

(2)

where m > 0 is a constant, and the Hermitian matrices α, β satisfy the anti-commutation relationships

(3) αβ + βα = OC2 , α2 = β2 = 1C2 .

Physically, the Dirac equation connects the theories of quantum mechanics and special relativity to describe

the evolution of quantum particles moving at near luminal speeds. The model is first order in time to allow

for a wave function interpretation of the solution “spinor” ψ(x, t) while allowing for a Pythagorean energy

addition relation, E2 = (cp)2 + (mc)2 where E is the energy of the particle, m is the mass, c is the speed

of light and p is the momentum, required by relativistic models. Futher, the Dirac equation allows for

the influence of an external potential in a manner that is relativistically invariant. For a more thorough

introduction to the Dirac equation see [40].

The first author is supported by Simons Foundation Grant 634269. The second author is supported by Simons Foundation

Grant 511825.
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The Dirac equation may be viewed as a square root of a system of Klein-Gordon, equations. This motivates

the following relationship, which follows from the relationships in (3)

(Dm − ω)(Dm + ω) = (iα∂x + βm− ω)(iα∂x + βm+ ω) = (−∂xx +m2 − ω2)1C2 .(4)

This allows us to formally define the free Dirac resolvent operator R0(z) = (Dm − z)−1 in terms of the free

resolvent R0(z) = (−∆− z)−1 for the Schrödinger operator for z in the resolvent set. That is,

R0(z) = (Dm + z)R0(z
2 −m2), z ∈ C \ σ(Dm),(5)

where σ(Dm) is the spectrum of the free operator which is purely absolutely continuous and unbounded both

above and below:

σ(Dm) = (−∞,−m] ∪ [m,∞).

In one physical interpretation, the Dirac equation couples the evolution of massive particle and anti-particles.

For suitable potential functions V , one has a Weyl criterion for H := Dm+V . That is, σac(H) = σac(Dm) =

(−∞,−m] ∪ [m,∞). For a rather general class of potentials including the ones we consider here, there are

no eigenvalues embedded in the continuous spectrum, [9].

Throughout the paper we use the notation ⟨x⟩ := (1 + |x|2) 1
2 . When we write |V (x)| ≲ ⟨x⟩−δ we mean

that each entry Vij(x) of the potential matrix satisfies the bound |Vij(x)| ≲ ⟨x⟩−δ. Similarly, if we write

V ∈ Lp we mean each entry of V is in Lp. The weighted Lp spaces Lp,σ are defined by {f : ⟨·⟩σf ∈ Lp}.
Many of these spaces are used for C2-valued functions, which will be clear from context. We write Pac(H)

to denote projection onto the absolutely continuous spectral subspace of L2 associated to the Dirac operator

H. Finally, we write a− to mean a − ϵ for an arbitrarily small, but fixed ϵ > 0. Similarly, we write a+ to

mean a+ ϵ.

We say that the threshold energies are regular if there are no distributional solutions to Hψ = mψ or

Hψ = −mψ for ψ ∈ L∞. This may also be characterized by the uniform boundedness of the resolvent

operator (H − λ)−1 as λ → m (resp. −m) between certain weighted L2 spaces. We provide a detailed

characterization of the threshold obstructions in Section 5.

Our first result is

Theorem 1.1. Assume that V is self adjoint and |V (x)| ≲ ⟨x⟩−δ. If the threshold energies ±m are regular,

then

i) if δ > 3, and |∂xV (x)| ≲ ⟨x⟩−1− we have the dispersive bounds

∥e−itHPac(H)⟨H⟩− 3
2−∥L1→L∞ ≲ ⟨t⟩− 1

2 ,

∥e−itHPac(H)⟨H⟩−1−∥L1→L∞ ≲ 1.

ii) if δ > 5, and |∂xV (x)| ≲ ⟨x⟩−2−, then for |t| > 1 we have

∥e−itHPac(H)⟨H⟩− 3
2−∥L1,τ→L∞,−τ ≲ |t|− 1

2−τ , 0 ≤ τ ≤ 1.

We note that the continuity and differentiability of the potential is required only for the high energy

argument. We note that the |t|− 1
2 dispersive decay bounds for the free Dirac and Klein-Gordon equations

require three halves derivative loss. This suggests that the bounds stated above are essentially sharp with
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respect to the required differentiability, given by the negative powers of ⟨H⟩, of the initial data. We also

note that the weighted bounds are integrable in time when τ > 1
2 . The high energy contribution to the

dispersive bound provides some difficulties. Namely, both free and the perturbed resolvent operators and

their derivatives don’t decay in the spectral variable z as |z| → ∞. This limits the bootstrapping argument

of Agmon, [1], to compact subsets of the continuous spectrum. This typically requires one to assume more

smoothness on the initial data to counteract this lack of decay and close the large energy argument. To

overcome this obstacle and prove sharp estimates, we adapt the high energy method used in [18, 19, 16] to

the case of the one dimensional Dirac operator. This method has never been used before to obtain L1 → L∞

dispersive estimates. In addition to proving the dispersive bounds, this allows us to prove a uniform limiting

absorption principle, establish a family of Strichartz estimates and establish results about the spectrum of

one dimensional Dirac operators, see Theorem 1.3, and Corollaries 1.4 and 1.5 below.

We also provide a classification of the effect of threshold resonances on the dynamics of the solution.

The existence of threshold resonances only effects the low energy evolution, the high energy bounds are

unaffected. Namely, with χ a smooth cut-off to a sufficiently small neighborhood of the threshold, and for

C2-valued f, g denoting ⟨f, g⟩ =
∫
f(x)g∗(x) dx, we have the following low energy bounds.

Theorem 1.2. Assume that V is self adjoint and |V (x)| ≲ ⟨x⟩−δ. If one or both of the threshold energies

±m are not regular, then

i) If δ > 5, we have the low energy dispersive bound

∥e−itHPac(H)χ(H)∥L1→L∞ ≲ ⟨t⟩− 1
2 .

ii) If δ > 9, then for |t| > 1 there exists an operator Ft of rank at most two (one for each threshold)

satisfying ∥Ft∥L1→L∞ ≲ |t|− 1
2 , so that

∥e−itHPac(H)χ(H)− Ft∥L1,τ→L∞,−τ ≲ |t|− 1
2−τ , 0 ≤ τ ≤ 1.

iii) Furthermore, for δ > 9 and |t| > 1, with stronger weights we can express the operator Ft from the

previous statement as a rank two projection to canonical resonance functions (one for each threshold)

for f ∈ L1 as follows:

Ftf = t−
1
2

(
c+e

−imtψ+⟨f, ψ+⟩+ c−e
imtψ−⟨f, ψ−⟩

)
+O(|t|− 1

2−τ ⟨x⟩2τ∥f∥L1,2τ ),

where ψ± ∈ L∞ are the canonical resonance functions, that is distributional solutions to Hψ± = ±mψ±,

and the constants c± can be computed explicitly; for c+, see Proposition 4.6.

The effect of a threshold resonance is to produce a slower decaying portion of the evolution that is rank at

most one for a resonance at the positive (λ = m) or negative (λ = −m) thresholds respectively. This theorem

may be combined with the high energy argument in Section 7 to provide a dispersive bound without the low

energy cut-off as the effect of a threshold obstruction only affects an arbitrarily small neighborhood of λ = m

(λ = −m respectively). The rank at most two operator we construct, as noted in the final statement of

Theorem 1.2 is a time-dependent scalar function multiplying the projection onto the one dimensional space

of resonances at each threshold, at the cost of greater spatial weights. See Propositions 4.5 and 4.6 below

for a construction of this operator.
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The decay requirement on the potential for these results is not necessarily optimal. The different values

of δ in Theorems 1.1 and 1.2 are required to develop appropriate expansions for the resolvent around the

threshold energies.

As in the multi-dimensional results, [20, 21, 22, 16], our techniques also provide useful insights on the

spectral theory of the perturbed operator. Our resolvent expansions obtained below also show that RV (λ) =

(H − λ)−1 is a uniformly bounded operator between weighted L2 spaces in a neighborhood of λ = ±m if

the thresholds are regular.1 This implies a limiting absorption principle bound in a neighborhood of each

threshold, as well as showing the absence of eigenvalues in these neighborhoods. As a consequence, there are

only finitely many eigenvalues in the spectral gap (−m,m). Combining this with the high energy argument,

see Lemma 6.2 below, we obtain a uniform limiting absorption principle over the spectrum, namely

Theorem 1.3. Under the assumption that the threshold energies are regular, and if V has continuous entries

satisfying |V (x)| ≲ ⟨x⟩−3−, we have the uniform resolvent bounds:

sup
|λ|>m

∥⟨x⟩−σ(H − (λ+ i0))−1⟨x⟩−σ∥2→2 ≲ 1, provided σ > 1.

There are several immediate consequences of this result:

Corollary 1.4. Let V be a self-adjoint matrix, with continuous entries satisfying |V (x)| ≲ ⟨x⟩−3−. If the

threshold energies are regular, we have

(6) ∥⟨∇⟩−θe−itHPac(H)f∥Lp
t (L

q
x) ≲ ∥f∥L2(R)

provided that 2 ≤ q, r ≤ ∞ with

θ ≥ 1

2
+

1

p
− 1

q
and

2

p
+

1

q
=

1

2
.

Finally, the argument used for high energies in Theorem 1.3 requires only that |V (x)| ≲ ⟨x⟩−1− with

continuous entries, in particular it doesn’t require V to be self-adjoint. In addition, σ > 1
2 suffices. The

operator Dm is self-adjoint, H has the same domain as Dm and for unit functions η in the domain the

quadratic form ⟨Hη, η⟩ is confined to a strip of finite width around the real axis. Consequently, any λ ∈ R

with |λ| sufficiently large cannot be an embedded eigenvalue or resonance. The perturbation argument in

[16] shows that the eigenvalue-free zone extends to a sector of the complex plane containing a portion of the

real line sufficiently far from zero energy.

Corollary 1.5. Let V be any matrix satisfying |V (x)| ≲ ⟨x⟩−1− with continuous entries. Then, there exists

a m < λ1 <∞ and a δ > 0 depending on V , m and σ > 1
2 so that

sup
|λ|>λ1

0<|γ|<δ|λ|

∥⟨x⟩−σ(H − (λ+ iγ))−1⟨x⟩−σ∥2→2 ≲ 1.

As a result, there is a compact subset of the complex plane outside of which the spectrum of H is confined to

the real axis.

1In the case of a resonance, using our bounds one may conclude that (λ∓m)RV (λ) is uniformly bounded in a neighborhood

of the threshold.
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The study of dispersive estimates and the effect of threshold obstructions for the Dirac equation have

only more recently been studied compared to other dispersive equations such as the Schrödinger, wave and

Klein-Gordon equation. To the authors’ knowledge, this is the first study of uniform, L∞ based, dispersive

estimates for the one dimensional equation. Estimates for the one dimensional operator on weighted L2 spaces

when the thresholds are regular were obtained by Kopylova in [31], Strichartz and Mizumachi estimates were

obtained by Pelinovski and Stefanov in [35] for an exponentially decaying potential in service of studying the

stability of solitons to a non-linear Dirac equation. We note that the class of potentials we consider include

those that arise naturally when linearizing around soliton solutions of non-linear Dirac equations.

The dispersive estimates for the three dimensional Dirac equation is more studied going back to the work

of Boussäıd [8], and D’Ancona and Fanelli, [14] in the massive m > 0 case. Earlier results on the free

Dirac operator were obtained in [3], while the analysis in [7] used a careful study of the Jost functions.

The characterization of threshold obstructions as resonances and eigenvalues along with their effect on the

dispersive bounds in three dimensions has been studied by the authors and Toprak, [22]. Dispersive bounds

for two dimensional Dirac has been studied by the authors, [20], with Toprak [21] in the massive case and

with Goldberg in the massless case [17]. Much of the work somehow relies on the techniques developed in

the study of other dispersive equations, notably the Schrödinger equation [34, 27, 23, 32, 28, 33, 41, 15, 29],

which analyze the effect of threshold energy obstructions.

Our results in one dimension are inspired by previous work on the Schrödinger equation. In [27] Goldberg

and Schlag used an analysis based on the Jost functions to prove a |t|− 1
2 decay rate for the Schrödinger

operator whether zero energy was regular or not. In the survey paper [38] Schlag also showed that if zero

energy is regular one can obtain a faster |t|− 3
2 bound at the cost of spatial weights, this was motivated

by results for a matrix equation arising in linearization about special solutions for a nonlinear equation in

work with Krieger, [32]. The assumptions on the potential and spatial weights required has been lessened

in subsequent works, [28, 33, 15, 29]. The sharpest results were obtained in [15], and in Hill’s Ph.D. thesis,

[29]. These results are analogous to what we prove in Theorem 1.1 and in the first claim of Theorem 1.2.

We note that statement of the form found in the second claim of Theorem 1.2, which requires smaller spatial

weights, have not been obtained for the one dimensional Schrödinger operator. Goldberg’s work [28] proves

a statement of form of the third claim in Theorem 1.2. Using our methods these results can be obtained with

a rank-one operator Ft for the Schrödinger equation. A similar result for the two dimensional Schrödinger

operator with an s-wave resonance only at the threshold was obtained by Toprak in [41]. In our analysis,

we eschew the approach of using the Jost functions and instead provide a careful analysis of the spectral

measure by studying the resolvent operators, as in the multi-dimensional cases [20, 22, 21, 17].

There is also much interest in the study of non-linear Dirac equations. See for example, [24, 35, 4, 5, 13, 10]

and the recent monograph by Boussäıd and Comech [11]. There is a longer history in the study of spectral

properties of Dirac operators. Limiting absorption principles for the Dirac operators have been studied in

[42, 26, 16, 12]. The lack of embedded eigenvalues, singular continuous spectrum and other spectral properties

is well established, [6, 26, 2, 12, 9]. In particular, for the class of self-adjoint potentials we consider, the

Weyl criterion implies that σac(H) = σ(Dm) and the remainder of the spectrum is composed of eigenvalues
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confined to the spectral gap σp(H) ⊆ [−m,m]. In general, there need not be finitely many eigenvalues in

the gap [40].

Since H is self-adjoint, the functional calculus allows us to represent the solution as an integral over the

spectrum via the Stone’s formula:

e−itHPac(H) =
1

2πi

∫
σac(H)

e−itλ[R+
V −R−

V ](λ) dλ.(7)

Here R±
V (λ) are the limiting perturbed Dirac resolvents defined by

R±
V (λ) = lim

ϵ↘0
(Dm + V − (λ± iϵ))−1, λ ∈ σac(H).

Their difference provides the spectral measure.

The paper is organized as follows. In Section 2 we study the free Dirac evolution, and develop oscillatory

integral bounds that are used throughout the paper. In Section 3, we develop expansions for the perturbed

resolvent in a neighborhood of the threshold energy λ = m whether the threshold is regular or not. These

expansions may then be used to build an appropriate spectral measure to analyze the perturbed evolution.

We then utilize these expansions in Section 4 to prove low energy dispersive bounds. In Section 5 we

characterize the threshold obstructions in terms of distributional solutions to Hψ = ±mψ and characterize

the spectral subspace of L2 the obstructions induce. In Section 6 we show how the resolvent expansions

used to obtain the dispersive bounds may be adapted to prove the uniform limiting absorption principle in

Theorem 1.3. Finally, in Section 7 we prove high energy dispersive bounds when the spectral parameter is

bounded away from the threshold energies.

2. The free evolution

We begin by looking at the free Dirac evolution. Using the Stone’s formula, (7), we may write

(8) e−itDm(x, y) =
1

2πi

∫
σac(Dm)

e−itλ[R+
0 −R−

0 ](λ)(x, y) dλ.

Without loss of generality, throughout the paper we consider the positive branch of the spectrum [m,∞).

The results for the negative branch (−∞,−m] follow with minimal changes, see Remark 4.7 below. From

now on whenever we write Dm we mean Dmχ(m,∞)(Dm). Our analysis relies upon reducing the operator

bounds to oscillatory integral estimates. To that end, recall the Van der Corput lemma, [39].

Lemma 2.1. Let ϕ be a smooth real valued function on R and ψ be a smooth compactly supported function.

If |∂zzϕ(z)| ≥ λ > 0 in the support of ψ, then∣∣∣∣ ∫
R
eiϕ(z)ψ(z) dz

∣∣∣∣ ≤ Cλ−
1
2 ∥∂zψ∥L1 .

Here C is an absolute constant.

We utilize the following implication of Van der Corput lemma repeatedly.

Lemma 2.2. Let ψj be a smooth function supported on the set |z| ≈ 2j when j > 0 and supported in a small

neighborhood of zero when j = 0. Then
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R
e−it

√
z2+m2+izrψj(z) dz

∣∣∣∣
≤ Cm min

(
∥ψj∥L1 , |t|− 1

2 2
3j
2 ∥∂zψj∥L1 , |t|− 3

2 2
3j
2

∥∥[∂zz + ir∂z]
(ψj

z

√
z2 +m2

)∥∥
L1

)
for any r ∈ R.

Proof. The first bound is obvious. The second bound follows immediately from Lemma 2.1 noting that

|∂zz(−t
√
z2 +m2 + zr)| ≳ |t|2−3j in the support of ψj .

For the last bound, we integrate by parts once using ∂ze
−it

√
z2+m2

= e−it
√
z2+m2 −itz√

z2+m2
, which leads to

1

it

∫
R
e−it

√
z2+m2

∂z

[
eizr

√
z2 +m2

z
ψj(z)

]
dz =

1

it

∫
R
e−it

√
z2+m2+izr[ir + ∂z]

[√
z2 +m2

z
ψj(z)

]
dz.

From this the bound follows immediately from Lemma 2.1 as above. □

By (5), and the standard representation of the free Schrödinger resolvent kernel using Bessel functions,

we have the representation

R±
0 (λ)(x, y) = (Dm + λ)

±ie±i
√
λ2−m2|x−y|

2
√
λ2 −m2

.

With the change of variable λ =
√
m2 + z2 (and renaming R±

0 (λ) by R±
0 (z)), we write

R±
0 (z)(x, y) =

±i
2z

[∓αzsgn(x− y) + βm+
√
z2 +m2I]e±iz|x−y|.(9)

Using the same change of variable in (8) and then using R+
0 (z) = R−

0 (−z), we have

(10) e−itDm(x, y) =
1

2πi

∫ ∞

0

e−it
√
z2+m2 z√

z2 +m2
[R+

0 −R−
0 ](z)(x, y) dz

=
1

2πi

∫
R
e−it

√
z2+m2 z√

z2 +m2
R+

0 (z)(x, y) dz

=
1

4π

∫
R
e−it

√
z2+m2+iz|x−y| z√

z2 +m2

[
− αsgn(x− y) +

1

z
(mβ +

√
z2 +m2I)

]
dz.

Here the integrals are understood in the principal value sense. We have the following bound for the free

evolution.

Theorem 2.3. Let χj(z) be a smooth, even cut-off for the set |z| ≈ 2j. Then the kernel of the free Dirac

evolution satisfies the bound

∥e−itDmχj(Dm)∥L∞ ≲ min(2j , |t|− 1
2 2

3j
2 , |t|− 3

2 ⟨x− y⟩2
3j
2 ).

Take χ0(z) to be a smooth cut-off for a sufficiently small neighborhood of the threshold energy z = 0 (λ = m)

we have

∥e−itDmχ0(Dm)∥L∞ ≲ ⟨t⟩− 1
2 .

Furthermore, for |t| > 1 we have the weighted estimate

∥e−itDmχ0(Dm)− F 0
t ∥L∞ ≲ |t|− 3

2 ⟨x− y⟩,

where

(11) F 0
t (x, y) =

m

4π
(β + I)

∫
R
e−it

√
z2+m2+iz|x−y| χ0(z)√

z2 +m2
dz.
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Proof. First consider the energies away from zero. Let

ψj(z, x, y) = χj(z)
z√

z2 +m2

[
− αsgn(x− y) +

1

z
(mβ +

√
z2 +m2I)

]
.

Note that ∥ψj∥L1 ≲ 2j and ∥∂zψj∥L1 ≲ 1 uniformly in x, y. Therefore, using Lemma 2.2, we can bound

the right hand side of (10) by min(2j , |t|− 1
2 2

3j
2 ). To obtain the weighted bound, we again apply Lemma 2.2

(with r = |x− y|) noting that∥∥[∂zz + ir∂z]
(ψj

z

√
z2 +m2

)∥∥
L1 =

∥∥[∂zz + ir∂z]
(
− αsgn(x− y) +

1

z
(mβ +

√
z2 +m2I)

)
χj(z)

∥∥
L1 ≲ ⟨r⟩.

The first bound for the low energies follows similarly, noting that

ψ0(z, x, y) := χ0(z)
z√

z2 +m2

[
− αsgn(x− y) +

1

z
(mβ +

√
z2 +m2I)

]
satisfies ∥ψ∥L1

z
, ∥∂zψ∥L1

z
≲ 1. For the weighted bound we write

ψ0(z, x, y) =
χ0(z)√
z2 +m2

m(β + I) + χ0(z)
z√

z2 +m2
ψ̃0(z, x, y),

where the error term satisfy |ψ̃0|, |∂zψ̃0|, |∂zzψ̃0| ≲ 1 in the support of χ0. This leads to the weighted bound

for the contribution of ψ̃0 as in the case j > 0, and the first term yields the operator F 0
t . □

3. Resolvent expansions near the threshold

To understand the contribution of the low energy portion of the evolution to the Stone’s formula, we

need to understand the behavior of the integral kernel of the perturbed resolvent operators R±
V (λ)(x, y)

as λ → m+. As in the analysis of the free evolution in Theorem 2.3, we utilize the change of variable

λ =
√
m2 + z2 and rename R±

V (λ) as R±
V (z). Under the assumption that the matrix V : R → C2 is

self-adjoint, the spectral theorem allows us to write

V = B∗

 λ1 0

0 λ2

B,

with λj ∈ R and B unitary. We can further write ηj = |λj |
1
2 ,

V = B∗

 η1 0

0 η2

U

 η1 0

0 η2

B, with U =

 sgn(λ1) 0

0 sgn(λ2)

 .

So that, with

v =

 η1 0

0 η2

B,

we can write V = v∗Uv. This allows us to employ the symmetric resolvent identity:

R±
V (z) = R±

0 (z)−R±
0 (z)v

∗[M±(z)]−1vR±
0 (z),(12)

where

M±(z) = U + vR±
0 (z)v

∗.(13)
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We now seek to invert M±(z) in a neighborhood of z = 0. We only consider the “+” case and drop the

superscript “+”. We write

v =

a b

c d

 , v∗ =

a c

b d

 .

For the convenience of the reader we outline some notation that is utilized throughout the remainder of

the paper. We say that an operator T : L2 → L2 with integral kernel T (x, y) is absolutely bounded if the

operator with integral kernel |T (x, y)| is also a bounded operator on L2. Finite rank and Hilbert-Schmidt

operators are absolutely bounded.

To control the size of an absolutely bounded operator with respect to the spectral variable z we write Γk
θ

to denote an absolutely bounded operator that satisfies the bound

k∑
j=0

|z|j
∥∥|∂jzΓk

θ |
∥∥
L2→L2 ≲ zθ, 0 < |z| < z0,

for some z0 > 0. We will utilize this notation for k = 0, 1, 2. Similarly, we denote a z independent, absolutely

bounded operator as Γ. Furthermore, we denote constants whose exact values are not important for our

analysis by cj . We note that the operators written with this notation and constants are allowed to vary from

line to line. Finally, we write f(z) = Ok(z
ℓ) to denote that |∂jzf(z)| ≲ zℓ−j for 0 ≤ j ≤ k and 0 < |z| < z0.

To invert M(z) near z = 0, we need to develop appropriate expansions for R0(z). Noting the representa-

tion for the free resolvent in (9), and expanding
√
m2 + z2 near z = 0 we see that

(14) R0(z)(x, y) =
[
iα∂x +mβ +

√
m2 + z2I

] ieiz|x−y|

2z
=

i

2

[
− α sgn(x− y) +

m

z
(β + I) +

z

2m
I +O2(z

3)I
]
eiz|x−y|.

We have

Lemma 3.1. Let r := |x− y|, 0 < z < 1. We have the following expansions for the free resolvent

R0(z)(x, y) =
im

2z
(β + I) +O(1),(15)

=
im

2z
(β + I) +G0(x, y) +O1

(
zℓ⟨r⟩1+ℓ

)
, 0 ≤ ℓ ≤ 1,(16)

=
im

2z
(β + I) +G0(x, y) + zG1 +O2

(
z1+ℓ⟨r⟩2+ℓ

)
, 0 ≤ ℓ ≤ 1,(17)

where

G0(x, y) := − i

2
αsgn(x− y)− m

2
(β + I)|x− y| = (Dm +mI)

(
−|x− y|

2

)
,(18)

(19) G1(x, y) :=
1

2
α(x− y)− im

4
(β + I)|x− y|2 + i

4m
I.

More generally, for each k = 0, 1, . . . ,

(20) R0(z)(x, y) =
im

2z
(β + I) +

k∑
j=0

zjGj(x, y) +O2

(
zk+⟨r⟩k+1+

)
,

where Gj(x, y) = O(⟨x− y⟩j+1).
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Proof. The first bound is immediate from the expansion in (14). For the others, it is easy to check the

bounds for |z||x− y| < 1 by using the Taylor expansion of the exponential.

Note that when |z||x− y| > 1, we have

|R0(z)−
im

2z
(β + I)−G0| ≲

1

|z|
+ |x− y| ≲ ⟨r⟩ ≲ zℓ⟨r⟩1+ℓ, 0 ≤ ℓ ≤ 1,

|∂z(R0(z)−
im

2z
(β + I)−G0)| ≲

|x− y|
z

≲ zℓ−1⟨r⟩1+ℓ, 0 ≤ ℓ ≤ 1,

which implies the first bound for |z||x− y| > 1.

Similarly, when |z||x− y| > 1 and j = 0, 1, 2

|∂jz(R0(z)−
im

2z
(β + I)−G0 − zG1)| ≲ z1−j |x− y|2 ≲ z1+ℓ−j⟨r⟩2+ℓ, 0 ≤ ℓ ≤ 1.

The last bound follows similarly. □

Recalling the definition of M(z) in (13), we note that the contribution of the leading term im
2z (β + I) of

R0(z) to M(z) is the operator with the kernel

im

2z
v(x)(β + I)v∗(y) =

im

2z

 a(x) + b(x)

c(x) + d(x)

 [
a(y) + b(y), c(y) + d(y)

]
=: g(z)P (x, y),

where

(21) g(z) =
im

2z
∥(a+ b, c+ d)T ∥2L2 .

Here P is the orthogonal projection onto the span of the vector (a+ b, c+ d)T , whose integral kernel is

P (x, y) = ∥(a+ b, c+ d)∥−2
L2 v(x)(β + I)v∗(y).

Remark 3.2. It is possible to have (a + b, c + d) = 0 everywhere even if V is not identically zero. In this

case V has rank one, and since V is self-adjoint it has to take the special form V (x) = k(x)

 1 −1

−1 1

.

Furthermore, P = 0 and the threshold m is regular. We ignore the details for this special case.

We also define the self-adjoint and absolutely bounded operator (provided |v(x)| ≲ ⟨x⟩− 3
2−)

T := U + vG0v
∗.(22)

The following expansions forM(z) follows immediately from the expansions in Lemma 3.1 and the discussions

above noting that the operator with kernel v(x)⟨x − y⟩sv∗(y) (where s ≥ 0) is a Hilbert-Schmidt operator

provided that |v(x)| ≲ ⟨x⟩−s− 1
2−.

Lemma 3.3. Assume that |v(x)| ≲ ⟨x⟩−δ. Then

M(z) = g(z)P +M0(z),

where M0(z) = Γ0
0 provided that δ > 1

2 . Moreover,

M0(z) = T +M1(z),
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where M1(z) = Γ1
0+, provided that δ > 3

2 . Furthermore, for each k = 1, 2, . . . ,

M1(z) =

k∑
j=1

zjMj + Γ2
k+, where Mj = vGjv

∗,

provided that δ > 3
2 + k.

Definition 3.4. Let Q = I − P . We say that the threshold λ = m is regular if QM0Q is invertible on

QL2 for all 0 < |z| < z0 for some z0 > 0 and if ∥(QM0Q)−1∥L2→L2 remains bounded as z → 0. Note

that in the case |v(x)| ≲ ⟨x⟩− 3
2−, this is equivalent to the invertibility of T on QL2 by the expansions in the

Lemma 3.3 above. In that case, we define the operator D0 = (QTQ)−1. Also note that, since QTQ is a

compact perturbation of QUQ, by Fredholm alternative QTQ is invertible if and only if its kernel is empty. If

T is not invertible, with S1 the Riesz projection onto its kernel, we instead define D0 as D0 = [Q(T+S1)Q]−1

with a slight abuse of notation. We note that in both cases D0 is an absolutely bounded operator; the proof

follows as in Lemma 7.1 in [20] with minor modifications. See Section 5 below for a classification of S1L
2;

in particular we prove that it has dimension at most one.

The following proposition establishes the invertibility of M(z) for sufficiently small z and provides expan-

sions for its inverse in the case m is a regular point of the spectrum. The first expansion will be useful in

establishing the limiting absorption principle for energies close to the threshold m. The second expansion

will be used in the proof of dispersive estimates for low energies with decay rate |t|− 1
2 , and the third one for

the weighted estimates with improved time decay.

Proposition 3.5. Assume that m is a regular point of the spectrum, and |v(x)| ≲ ⟨x⟩−
1
2−. Then, there

exists z0 > 0 so that for all 0 < |z| < z0, M(z) is invertible on L2 and

M−1(z) = cP zP + z2Λ0(z) + zΛ1(z)Q+ zQΛ2(z) +QΛ3(z)Q,

where cP = −2i
m∥(a+b,c+d)T ∥2

2
and for 0 < |z| < z0, ∥Λj∥L2→L2 ≲ 1, for j = 0, 1, 2, 3.

Moreover, if v decays faster, |v(x)| ≲ ⟨x⟩−
3
2−, then

M−1(z) = z2Λ0(z) + zΛ1(z)Q+ zQΛ2(z) +QΛ3(z)Q,

where Λj are absolutely bounded operators satisfying

(23) ∥ |zΛj(z)| ∥L2→L2 ∈ L1
z, ∥ |∂z(zΛj(z))| ∥L2→L2 ∈ L1

z.

Furthermore, if |v(x)| ≲ ⟨x⟩−
5
2−, then

M−1(z) = cP zP + z2Λ0(z) + zΛ1(z)Q+ zQΛ2(z) +QΛ3(z)Q,

where Λj are absolutely bounded operators satisfying the improved bounds

(24) ∥ |∂kzΛj(z)| ∥L2→L2 ∈ L1
z, k = 0, 1, 2, j = 0, 1, 2, 3.
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Proof. By definition QM0(z)Q is invertible on QL2 for all 0 < |z| < z0 with a uniformly bounded inverse.

Let D(z) := (QM0(z)Q)−1. To invertM(z), we write it with respect to the decomposition L2 = PL2⊕QL2,

M(z) = g(z)P +M0(z) =

 g(z)P + PM0(z)P PM0(z)Q

QM0(z)P QM0(z)Q

 .
Recall that by the Fehsbach formula invertibility of a block matrix A hinges upon the invertibility of a22

and (a11 − a12a
−1
22 a21). In this case, with d = (a11 − a12a

−1
22 a21)

−1, we have

A−1 =

 d −da12a−1
22

−a−1
22 a21d a−1

22 a21da12a
−1
22 + a−1

22

 .
Note that in our case

a−1
22 = (QM0(z)Q)−1 = D(z), and

a11 − a12a
−1
22 a21 = P [g(z) +M0(z)−M0(z)QD(z)QM0(z)]P = h(z)P, where

(25) h(z) = g(z) + Tr(PM0(z)P − PM0(z)QD(z)QM0(z)P ) =
im∥(a+ b, c+ d)T ∥22

2z
+O(1),

provided that |v(x)| ≲ ⟨x⟩−
1
2− (by Lemma 3.3).

Therefore, we see that d(z) exists for sufficiently small but nonzero z:

(26) d(z) =
1

h(z)
P =

[
−2i

m∥(a+ b, c+ d)T ∥22
z +O(z2)

]
P = cP zP +O(z2).

Using this in Feshbach formula, we have

(27) M−1(z) = QD(z)Q+

1

h(z)

(
P − PM0(z)QD(z)Q−QD(z)QM0(z)P +QD(z)QM0(z)PM0(z)QD(z)Q

)
=

1

h(z)
P + zΛ1(z)Q+ zQΛ2(z) +QΛ3(z)Q

= cP zP + z2Λ0(z) + zΛ1(z)Q+ zQΛ2(z) +QΛ3(z)Q.

Here each Λj = Γ0
0. We have extra powers of z next to Λj , j = 0, 1, 2, coming from 1

h(z) and the formula

(30). This proves the first expansion in the lemma.

To obtain the other two expansions note that for |v(x)| ≲ ⟨x⟩− 3
2− we have M0(z) = T +M1(z), where

M1(z) = Γ1
0+. Therefore, QTQ is invertible on QL2 and D0 = (QTQ)−1 is an absolutely bounded operator

on QL2 (see the discussion in Definition 3.4). Since M1(z) = O(z0+) as an Hilbert-Schmidt operator

(see Lemma 3.3), we see that D(z) = (QM0(z)Q)−1 is an absolutely bounded operator on QL2 satisfying

∥D(z)∥ ≲ 1. Noting that

∂zD(z) = D(z)(Q∂zM0(z)Q)D(z),

∂zT = 0 and using Lemma 3.3, we conclude

∂zM0(z) = ∂zM1(z) = Γ0
−1+.

Hence

∥∂zD(z)∥ ≲ z−1+.
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Similarly, using the bound

M1(z) = zM1 + Γ2
1+,

from Lemma 3.3, which requires |v(x)| ≲ ⟨x⟩−
5
2−, we obtain by a Neumann series expansion

(28) D(z) = D0 + zΓ + Γ2
1+.

In particular,

∥∂zzD(z)∥ ≲ z−1+.

Using these bounds in the definition of h(z) we have

(29) h(z) = g(z) + Tr(PM0(z)P − PM0(z)QD(z)QM0(z)P ) =
im∥(a+ b, c+ d)T ∥22

2z
+ c0 +O1(z

0+),

provided that |v(x)| ≲ ⟨x⟩−
3
2− (by Lemma 3.3 and the bounds for QD(z)Q obtained above). Therefore, we

see that

(30) d(z) =
1

h(z)
P =

[
cP z + c2z

2 +O1(z
2+)

]
P.

In fact the error term can be improved to c3z
3 + O2(z

3+) if |v(x)| ≲ ⟨x⟩−
5
2− using (28) and the expansion

for M0 = T + M1 from Lemma 3.3 with k = 1 in (25). The exact values of unspecified constants are

unimportant for our analysis.

Using these in Feshbach formula, we have

M−1(z) = QD(z)Q+

1

h(z)

(
P − PM0(z)QD(z)Q−QD(z)QM0(z)P +QD(z)QM0(z)PM0(z)QD(z)Q

)
=

1

h(z)
P + zΛ1(z)Q+ zQΛ2(z) +QΛ3(z)Q.

Here each Λj satisfies the same bounds as QD(z)Q obtained above, in particular (23) and (24), and as before

Λ1, Λ2 have one extra power of z next to them coming from 1
h(z) . Finally, using the expansion for 1

h used in

(30)

Λ0(z) =
1

z2
(cP z +O2(z

1+))P,

and hence zΛ0(z) = (cP +O2(z
0+))P and it satisfies (23). In the case v has more decay, we can write

1

h(z)
P = cP zP + (c2z

2 + c3z
3 +O2(z

3+))P = cP zP + z2Λ0(z),

where Λ0(z) = (c0 + c1z +O2(z
1+))P satisfies (24). □

These expansions suffice to prove low energy dispersive bounds when the threshold is regular. When the

threshold is not regular, we develop the following expansions.

Proposition 3.6. Assume that m is not a regular point of the spectrum, and |v(x)| ≲ ⟨x⟩−
5
2−. Then, there

exists z0 > 0 so that for all 0 < |z| < z0, M(z) is invertible on L2 and

M−1(z) = z2Λ0(z) + zΛ1(z)Q+ zQΛ2(z) +QΛ3(z)Q,

where each Λj is an absolutely bounded operator satisfying the bounds (23).
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Furthermore, if |v(x)| ≲ ⟨x⟩−
9
2−, we have

(31) M−1(z) =
c−1

z
S1 + S1ΓP + PΓS1 + c1zP + z2Λ0(z) + zQΛ1(z) + zΛ2(z)Q+QΛ3(z)Q,

where each Λj satisfies (24).

Proof. We start with the first assertion. Let S = P + S1 and Q1 = Q − S1. Note that, since T is self

adjoint and S1 is the Riesz projection onto its kernel, Q1TQ1 is invertible. In addition, D1 = (Q1TQ1)
−1

is absolutely bounded on Q1L
2. This is seen by noting that the resolvent identity and Q1S1 = 0 yield

Q1D0Q1 = Q1D1Q1. Using Q = Q1 + S1 and S1D0 = D0S1 = S1, we see that Q1D0Q1 = QD0Q − S1.

Combining these we see that D1 = Q1D1Q1 = QD0Q − S1, so that D1 is the difference of two absolutely

bounded operators. Note that Q1M(z)Q1 = Q1M0(z)Q1 = Q1TQ1 + Γ1
0+ is invertible on Q1L

2 and

D(z) = (Q1M0(z)Q1)
−1 satisfies the same bounds as D(z) in the proof of Proposition 3.5. In fact, using

the decay of v we have

D(z) = D0 + zΓ + Γ2
1+.

We write

M(z) = g(z)P +M0(z) =

 SM(z)S SM0(z)Q1

Q1M0(z)S Q1M0(z)Q1

 .
We claim that B(z) := a11−a12a−1

22 a21 = S[M(z)−M0(z)Q1D(z)Q1M0(z)]S is invertible on SL2 for small

but nonzero z and denote its inverse by d(z). Therefore by the Feshbach formula, we have

(32) M−1(z) = Sd(z)S +Q1D(z)Q1 +Q1D(z)Q1M0(z)Sd(z)SM0(z)Q1D(z)Q1

− Sd(z)SM0(z)Q1D(z)Q1 −Q1D(z)Q1M0(z)Sd(z)S.

We now prove that B is invertible as claimed. Recalling that

S1, Q1 ≤ Q, S1TQ = S1Q1 = S1P = PQ = 0, M(z) = g(z)P +M0(z), M0(z) = T +M1(z),

and dropping z dependence, we write

(33) B = S[M(z)−M0(z)Q1D(z)Q1M0(z)]S

=

 S1[M1 −M1Q1DQ1M1]S1 S1[T +M1 −M1Q1DQ1M0]P

P [T +M1 −M0Q1DQ1M1]S1 hP


=

 zS1M1S1 +O2(z
1+)S1 S1[T + zΓ∗ +O2(z

1+)]P

P [T + zΓ +O2(z
1+)]S1 hP

 ,
where h is as in (25) with Q replaced with Q1; it satisfies the same expansions as before. Since PL2

and S1L
2 are one dimensional subspaces, see Corollary 5.3 below, we can choose unit ϕ ∈ S1L

2 and θ =

∥(a+ b, c+ d)T ∥−1
2 v(1, 1)T ∈ PL2, and writing B with respect to the basis {ϕ, θ} we have

(34) B =

 k ℓ

ℓ h

 , B−1 =
1

hk − |ℓ|2

 h −ℓ
−ℓ k

 ,
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where

(35) k = zTr(S1M1S1) +O2(z
1+),

(36) ℓ = ⟨Tϕ, θ⟩+ c1z +O2(z
1+) = κ0∥(a+ b, c+ d)T ∥2 + c1z +O2(z

1+),

and κ0 is as in Lemma 5.1. Hence

(37) |ℓ|2 = Tr(S1TPTS1) + c1z +O2(z
1+) = |κ0|2∥(a+ b, c+ d)T ∥22 + c1z +O2(z

1+).

Therefore,

(38) hk − |ℓ|2 =
im∥(a+ b, c+ d)T ∥22

2

(
Tr(S1M1S1) +

2i

m
|κ0|2

)
+O2(z

0+).

The leading term is nonzero by Lemma 5.4 below, and hence hk− |ℓ|2 ̸= 0 for small z. Therefore, we obtain

d = B−1 = (
c−1

z
+O2(z

−1+))S1 + (c1z +O2(z
1+))P + (c0 +O2(z

0+))S1ΓP + (c0 +O2(z
0+))PΓS1.

Using this in (32) and noting that

(39) S1 ≤ Q, Q1M0S1 = Q1M1S1 = Q1[zΓ +O2(z
1+)]S1,

we obtain

M−1(z) = z2Λ0(z) + zQΛ1(z) + zΛ2(z)Q+QΛ3(z)Q,

where Λj ’s satisfy the bounds in (23). Indeed, Λ0(z) = 1
z2 (c1z + O2(z

1+))P , and hence zΛ0(z) = (c1 +

O2(z
0+))P and it satisfies (23). Similarly, the most singular term of Λ3 is ( c−1

z + O2(z
−1+))S1, and hence

zΛ3(z) = (c−1 +O2(z
0+))S1 + · · · satisfies (23). The other terms are controlled similarly.

For the second assertion, we follow the same proof expanding the operators to higher orders of z. Using

the additional decay of v we have (recall the constants and any operator denoted Γ are allowed to change

from line to line and even in the same line)

D(z) = D0 + zΓ + z2Γ + z3Γ + Γ2
3+, and

M0 = T + zM1 + z2M2 + z3M3 +O2(z
3+).

Using these we have the following expansions for k and ℓ (ignoring the actual form of the leading terms):

k = c1z + c2z
2 + c3z

3 +O2(z
3+),

ℓ = c0 + c1z + c2z
2 +O2(z

2+), |ℓ|2 = c0 + c1z + c2z
2 +O2(z

2+), and hence

hk − |ℓ|2 = c0 + c1z + c2z
2 +O2(z

2+).

Therefore, we obtain

d = B−1 = (
c−1

z
+ c0 + c1z +O2(z

1+))S1 + (c1z + c2z
2 + c3z

3 +O2(z
3+))P

+ (c0 + c1z + c2z
2 +O2(z

2+))S1ΓP + (c0 + c1z + c2z
2 +O2(z

2+))PΓS1.

Using this and (39) in (32), we obtain

M−1(z) =
c−1

z
S1 + S1ΓP + PΓS1 + c1zP + z2Λ0(z) + zQΛ1(z) + zΛ2(z)Q+QΛ3(z)Q,
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where Λj ’s satisfy the bounds ∥ |∂kzΛj(z)| ∥L2→L2 ∈ L1
z, k = 0, 1, 2. □

Remark 3.7. In fact, to prove the final result in Theorem 1.2, an exact accounting of the leading terms in

B−1 is required. Using the leading terms of (25), (35), (36), (37), and (38) in (34), we can write the leading

terms of B−1 as

1

D

[ 1

cP z
S1 − S1TP − PTS1 + zTr(S1M1S1)P

]
,

where

D =
1

cP

(
Tr(S1M1S1) +

2i

m
|κ0|2

)
, and cP =

−2i

m∥(a+ b, c+ d)T ∥22
.

We can rewrite the expansion above as

cP zP +
1

D

[ 1

cP z
S1 − S1TP − PTS1 −

2i

m
|κ0|2zP

]
.

Therefore, we can rewrite (31) as

(40) M−1(z) = cP zP+
1

D

[ 1

cP z
S1−S1TP−PTS1−

2i

m
|κ0|2zP

]
+z2Λ0(z)+zQΛ1(z)+zΛ2(z)Q+QΛ3(z)Q.

4. Low energy dispersive bounds

In this section we prove the low energy bounds. We begin with the unweighted bound when the threshold

energy is regular. In all cases, we utilize the Stone’s formula and extend to the real line as usual to bound

e−itHPac(H) =
1

2πi

∫
R
e−it

√
z2+m2 z√

z2 +m2
R+

V (z)(x, y) dz.(41)

Then, we appeal to the symmetric resolvent identity (12) and employ Lemma 2.2. After extending to the real

line, we omit the ‘+’ on the resolvent operators. We let χ(z) be a smooth, even cut-off satisfying χ(z) = 1

when |z| ≤ z0
2 and χ(z) = 0 when |z| ≥ |z0|. Here z0 is the minimum of the constants from Proposition 3.5

and 3.6.

Proposition 4.1. Assuming that |v(x)| ≲ ⟨x⟩−δ for some δ > 3
2 , if the threshold energies are regular, we

have the following bound

∥e−itHPac(H)χ(H)∥L1→L∞ ≲ ⟨t⟩− 1
2 .

Further, if δ > 5
2 we have (for |t| > 1)∣∣[e−itHPac(H)χ(H)](x, y)

∣∣ ≲ |t|− 1
2 min(1, |t|−1⟨x⟩⟨y⟩).

We note that the leading term in the symmetric resolvent identity (12) involving only the free resolvent

may be controlled by Theorem 2.3. To understand the contribution of the second term in (12), we note the

expansions of M−1(z) in Proposition 3.5. Proposition 4.1 suffices to establish the bounds of Theorem 1.2

when τ = 0 and τ = 1. The full range follows from interpolation.

The following proposition suffices to prove the first bound in Proposition 4.1, and takes care of the

contribution of all terms in the second and third expansions in Proposition 3.5 needed for the second bound,

except cP zP :
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Proposition 4.2. Assume that Λ(z) is an absolutely bounded operator satisfying for 0 < |z| < z0 the bounds

(23), i.e.,

∥ |zΛ(z)| ∥L2→L2 ∈ L1
z, ∥ |∂z(zΛ(z))| ∥L2→L2 ∈ L1

z.

Then ∣∣∣∣ ∫
R
e−it

√
z2+m2 zχ(z)√

z2 +m2
[R0(z)vQΛ(z)Qv∗R0(z)](x, y) dz

∣∣∣∣ ≲ ⟨t⟩− 1
2 .

provided that |v(x)| ≲ ⟨x⟩− 3
2−. Moreover, if Λ(z) satisfies the bounds (24), i.e., ∥ |∂kzΛ(z)| ∥L2→L2 ∈ L1(z) for

k = 0, 1, 2, and |v(x)| ≲ ⟨x⟩− 5
2−, then, for |t| > 1, the integral above is bounded by |t|− 1

2 min(1, |t|−1⟨x⟩⟨y⟩).
Finally, the claims above remain valid under the same conditions on Λ and v if we replace QΛ(z)Q with

zΛ(z)Q, or zQΛ(z), or z2Λ(z).

Proof. We begin by using (14) to write

R0(z)(x, y) =
im

2z
(β + I)eiz|x−y| + eiz|x−y|R1(z).(42)

Here R1(z) is the non-singular portion of the free resolvent which satisfies |∂kzR1(z)(x, y)| ≲ 1 for k = 0, 1, 2.

We first consider the most singular term involving (β + I)/z on both sides. Ignoring the constants we

need to control:∫
R3

e−it
√
z2+m2+iz(|x−x1|+|y−y1|) χ(z)

z
√
z2 +m2

[
(β + I)v∗QΛ(z)Qv(β + I)

]
(x1, y1) dx1 dy1 dz.

Noting that Qv(β + I) = (β + I)v∗Q = 0, i.e.

(43)

∫
R
(β + I)v∗(x1)Q(x1, x2) dx1 =

∫
R
Q(y2, y1)v(y1)(β + I) dy1 = 0,

we can rewrite the integral as∫
R3

e−it
√
z2+m2 χ(z)

z
√
z2 +m2

[
eiz|x−x1|− eiz|x|

]
[(β+ I)v∗QΛ(z)Qv(β+ I)](x1, y1)

[
eiz|y1−y|− eiz|y|

]
dx1 dy1 dz.

Writing

eiz|x−x1| − eiz|x| = iz

∫ |x−x1|

|x|
eizs1 ds1 := izF (z, x, x1),(44)

and similarly for the second difference of phases, then changing the order of integration, we need to control

(with Λ̃(z, x1, y1) = [(β + I)v∗QΛ(z)Qv(β + I)](x1, y1))∫
R2

∫ |x−x1|

|x|

∫ |y−y1|

|y|

∫
R
e−it

√
z2+m2+iz(s1+s2)

zχ(z)√
z2 +m2

Λ̃(z, x1, y1) dz ds1 ds2 dx1 dy1.(45)

We use Lemma 2.2 (for j = 0) in the z integral with ψ0(z) =
zχ(z)√
z2+m2

Λ̃(z, x1, y1), to obtain the bound

(46) |(45)| ≲ min
(
∥zΛ̃∥L1

|z|≪1
, |t|− 1

2

∥∥∂z(zΛ̃(z))∥∥L1
|z|≪1

, |t|− 3
2

∥∥|Λ̃zz|+ (s1 + s2)|Λ̃z|+ |Λ̃|
∥∥
L1

|z|≪1

)
We consider the contribution of the last bound only since the other two follow similarly:

(47) |t|− 3
2

∫
R2

∫ |x−x1|

|x|

∫ |y−y1|

|y|

∫
|z|≪1

(
|Λ̃zz|+ (s1 + s2)|Λ̃z|+ |Λ̃|

)
dz ds1 ds2 dx1 dy1.

Note that ∫ |x−x1|

|x|

∫ |y−y1|

|y|
1 ds1 ds2 ≲ ⟨x1⟩⟨y1⟩,(48)
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as the length of the s1 and s2 integrals may be bounded by | |x− x1| − |x| | ≲ ⟨x1⟩ and ⟨y1⟩ respectively. We

also have ∫ |x−x1|

|x|

∫ |y−y1|

|y|
(s1 + s2) ds1 ds2 ≲ ⟨x1⟩2⟨y1⟩2⟨x⟩⟨y⟩.(49)

Here we used that |
∫ b

a
s ds| = 1

2 |b
2 − a2| ≲ |(b− a)(b+ a)| ≲ |b− a|max(a, b). Therefore, after changing the

order of integration, we see

|(47)| ≲ |t|− 3
2

∫
|z|≪1

∫
R2

⟨x1⟩⟨y1⟩
(
|Λ̃zz|+ ⟨x1⟩⟨y1⟩⟨x⟩⟨y⟩|Λ̃z|+ |Λ̃|

)
dx1dy1dz.

Recalling the definition of Λ̃ and using the Cauchy-Schwarz inequality in x1 and y1 integrals, we obtain

|(45)| ≲ |t|− 3
2

∫
|z|≪1

∥⟨x1⟩|v∗(x1)|∥L2
x1
(∥ |Λzz| ∥L2→L2 + ∥ |Λ| ∥L2→L2)∥⟨y1⟩|v(y1)|∥L2

y1
dz

+ ⟨x⟩⟨y⟩|t|− 3
2

∫
|z|≪1

∥⟨x1⟩2|v∗(x1)|∥L2
x1
∥ |Λz| ∥L2→L2∥⟨y1⟩2|v(y1)|∥L2

y1
dz ≲ ⟨x⟩⟨y⟩⟨t⟩− 3

2 .

In the last inequality, we used |v(x)| ≲ ⟨x⟩− 5
2− and the bounds on Λ and its derivatives. Note that the

contribution of the first two terms in (46) can be handled similarly but only requires |v(x)| ≲ ⟨x⟩− 3
2− as we

need only use (48) and not (49).

We now consider the least singular term involving R1(z) on both sides. We need to control:∫
R3

e−it
√
z2+m2+iz(|x−x1|+|y−y1|) zχ(z)√

z2 +m2
R1(z)(x, x1)[v

∗QΛ(z)Qv](x1, y1)R1(z)(y1, y) dx1dy1dz.

Let Λ̃ := R1(z)(x, x1)[v
∗QΛ(z)Qv](x1, y1)R1(z)(y1, y). After changing the order of integration, we use

Lemma 2.2 (for j = 0) in the z integral with ψ0(z) =
zχ(z)√
z2+m2

Λ̃ to obtain the bound

(50) ≲ min
(
∥zΛ̃∥L1

|z|≪1
, |t|− 1

2

∥∥∂z(zΛ̃(z))∥∥L1
|z|≪1

, |t|− 3
2

∥∥|Λ̃zz|+ (|x− x1|+ |y − y1|)|Λ̃z|+ |Λ̃|
∥∥
L1

|z|≪1

)
.

Since |∂kzR1(z)| = O(1), k = 0, 1, 2, we can assume all derivatives hit Λ(z), and the proof proceeds as in the

previous case.

The remaining cases are handled similarly using the additional factor(s) of z in place of the missing Q

orthogonalities. □

It now suffices to consider the contribution of the operator cP zP in (12) for the weighted bound:

Lemma 4.3. If |v(x)| ≲ ⟨x⟩− 5
2−, then for |t| > 1 we have the expansion

1

2πi

∫
R
e−it

√
z2+m2 χ(z)z√

z2 +m2
[R0(z)v

∗(cP zP )vR0(z)](x, y) dz = F 0
t (x, y) +O(|t|− 3

2 ⟨x⟩⟨y⟩),

where F 0
t (x, y) is given by (11).

Proof. Using (42) and recalling that cP = −2i
m∥(a+b,c+d)T ∥2

2
, we have

R0v
∗(cP zP )vR0

=
−2iz

m∥(a+ b, c+ d)T ∥22
eiz(|x−x1|+|y1−y|)

[
im

2z
(β + I) +R1(z)

]
v∗Pv

[
im

2z
(β + I) +R1(z)

]
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=
imeiz(|x−x1|+|y1−y|)

2∥(a+ b, c+ d)T ∥22z
(β + I)v∗Pv(β + I) + eiz(|x−x1|+|y1−y|)E(z, x, y),

where E(z, x, y) satisfies ∥∂kz E(z, x, y)∥1 ≲ 1 for k = 0, 1, 2.

Hence, applying Lemma 2.2 to the contribution of the second term with ψ0(z) =
zχ(z)√
z2+m2

E(z, x, y) yields
the desired bound. To control the contribution of the first term, first note that

(51)

∫
(β + I)v∗(x1)P (x1, y1)v(y1)(β + I) dx1 dy1 =

∫
(β + I)v∗(x1)v(x1)(β + I) dx1

= ∥(a+ b, c+ d)∥22(β + I).

We can rewrite the contribution of the first term as

m

4π∥(a+ b, c+ d)T ∥22

∫
R
e−it

√
z2+m2 χ(z)√

z2 +m2
eiz(|x−x1|+|y−y1|)(β + I)v∗Pv(β + I) dz

=
m

4π∥(a+ b, c+ d)T ∥22

∫
R
e−it

√
z2+m2

eiz|x−y| χ(z)√
z2 +m2

(β + I)v∗Pv(β + I) dz

+
m

4π∥(a+ b, c+ d)T ∥22

∫
R
e−it

√
z2+m2 χ(z)√

z2 +m2

[
eiz(|x−x1|+|y−y1|) − eiz|x−y|

]
(β + I)v∗Pv(β + I) dz.

Using (51) on the first term yields the operator F 0
t (x, y), see (11). As in the proof of Proposition 4.2, noting

that

eiz(|x−x1|+|y−y1|) − eiz|x−y| = iz

∫ |x−x1|+|y−y1|

|x−y|
eisz ds.

allows us to apply Lemma 2.2 to the second term. We note that∣∣(|x− x1|+ |y − y1|)2 − |x− y|2
∣∣ ≲ ⟨x⟩⟨y⟩⟨x1⟩2⟨y1⟩2,

which leads to the weighted bound as in Proposition 4.2. □

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. Utilizing the symmetric resolvent identity, (12), we bound the contribution of each

term to (7). For the unweighted bound, we note that Theorem 2.3 controls the contribution of the sole free

resolvent’s contribution to show∣∣∣∣ 1

2πi

∫
R
e−it

√
z2+m2 z√

z2 +m2
R0(z)(x, y) dz

∣∣∣∣ ≲ ⟨t⟩− 1
2 .

Using the second expansion for M−1(z) obtained in Proposition 3.5, all summands are controlled by Propo-

sition 4.2 for the unweighted bound.

For the weighted bound, using the third expansion for M−1(z) obtained in Proposition 3.5, all summands

are controlled by Proposition 4.2 except the leading term cP zP . One needs to utilize the delicate cancellation

between this term and the free resolvent. Specifically, using the second bound in Theorem 2.3 for the

free resolvent, and Lemma 4.3 for the contribution of cP zP , we see that their contributions add up to

F 0
t (x, y) +O(|t|− 3

2 ⟨x− y⟩
)
−
[
F 0
t (x, y) +O(|t|− 3

2 ⟨x⟩⟨y⟩)
]
= O(|t|− 3

2 ⟨x⟩⟨y⟩). □

We now turn to the dispersive bounds when the threshold is not regular. Before we state the main result

we have the following expansion for F 0
t :
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Lemma 4.4. For |t| > 1, the operator F 0
t given by (11) in Lemma 4.3 and Theorem 2.3 can be written as

F 0
t (x, y) =

m

4π

(−2πi)
1
2 eimt

(mt)
1
2

(β + I)χ(x/t)e−im
√
t2−x2

χ(y/t)e−im
√

t2−y2
+O(|t|− 3

2 ⟨x⟩⟨y⟩).

In particular, for |t| > 1, it is the sum of a rank one operator satisfying the unweighted bound |t|− 1
2 and an

operator satisfying the weighted bound.

Proof. Note that∫
R
e−it

√
z2+m2[

e+iz|x−y| − eiz(|x|+|y|)] χ(z)√
z2 +m2

dz

= i

∫ |x|+|y|

|x−y|

∫
R
e−it

√
z2+m2+izs zχ(z)√

z2 +m2
dz ds = O(|t|− 3

2 ⟨x⟩⟨y⟩),

by Lemma 2.2 noting that ∫ |x|+|y|

|x−y|
s ds = |xy|+ xy.

Defining

(52) Gt(r) :=

∫
R
e−it

√
z2+m2+izr χ(z)√

z2 +m2
dz,

it remains to prove thatGt(|x|+|y|), is finite rank up to an operator satisfying the weighted decay (for |t| > 1).

Note that if r ≳ |t| then there are no critical points and by non-stationary phase, Gt = O(r−N ) = O(|t|−N ).

When |x|, |y| ≪ |t|, by Lemma 3.6 in [22], with r3 = r4 = 0, we see

Gt(|x|+ |y|) = (−2πi)
1
2 eimt

(mt)
1
2

e−im
√
t2−x2

e−im
√

t2−y2
+O(|t|− 3

2 ⟨x⟩⟨y⟩).

Therefore,

(53) Gt(|x|+ |y|) = (−2πi)
1
2 eimt

(mt)
1
2

χ(x/t)e−im
√
t2−x2

χ(y/t)e−im
√

t2−y2
+O(|t|− 3

2 ⟨x⟩⟨y⟩).

Recalling (11), we obtain the claim. □

We are now ready to prove the first two claims in Theorem 1.2.

Proposition 4.5. If the threshold energy m is not regular, we have

∥e−itHPac(H)χ(H)∥L1→L∞ ≲ ⟨t⟩− 1
2 ,

provided that |v(x)| ≲ ⟨x⟩− 5
2−. Furthermore, if |v(x)| ≲ ⟨x⟩− 9

2−, then for |t| > 1, there is an operator

F+
t (x, y) of rank at most one satisfying ∥F+

t ∥1→∞ ≲ |t|− 1
2 , so that

∥e−itHPac(H)χ(H)− F+
t ∥L1→L∞ ≲ |t|− 3

2 ⟨x⟩⟨y⟩.

Proof. The unweighted bound follows from Proposition 4.2 and the first expansion in Proposition 3.6. For the

weighted bound, the contribution of the Λj terms in the second expansion in Proposition 3.6 are controlled

by Proposition 4.2. Noting the expansion in (40), we need to understand the contribution of

cP zP +
1

D

[ 1

cP z
S1 − S1TP − PTS1 −

2i

m
|κ0|2zP

]
.
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We note that the contribution of the first term, cP zP , given by Lemma 4.3 exactly cancels with the free

evolution as in the regular case. The contribution of P in the second term gives− 2i
DmcP

|κ0|2F 0
t by Lemma 4.3,

which can be controlled by Lemma 4.4 up to a rank one operator:

(54) − 2i

DmcP
|κ0|2F 0

t =
|κ0|2

2πiDcP
(−2πi)

1
2 eimt

(mt)
1
2

(β+ I)χ(x/t)e−im
√
t2−x2

χ(y/t)e−im
√

t2−y2
+O(|t|− 3

2 ⟨x⟩⟨y⟩).

We now consider the contribution of the remaining terms 1
D
[

1
cP zS1 − S1TP − PTS1

]
:

1

2πiD

∫
R
e−it

√
z2+m2 zχ(z)√

z2 +m2

[
R0(z)v

∗[ 1

cP z
S1 − S1TP − PTS1

]
vR0(z)

]
(x, y) dz.

To this end, we rewrite the resolvent once more as

R0(z)(x, y) = R−1(z)(x, y)e
iz|x−y| +R2(z)e

iz|x−y|, where(55)

R−1(z)(x, y) :=
i

2

[m
z
(β + I)− αsgn(x− y)

]
,

and using (14) we see that R2(z) = c1z + O2(z
3). Using the additional factor of z from R2, by a minor

variation of the proof of Proposition 4.2, we have∣∣∣∣ ∫
R3

e−it
√
z2+m2+iz(|x−x1|+|y−y1|) zχ(z)√

z2 +m2
R2v

∗(
c−1

z
S1 − S1TP − PTS1)vR−1 dz dx1 dy1

∣∣∣∣ ≲ |t|− 3
2 ⟨x⟩⟨y⟩,∣∣∣∣ ∫

R3

e−it
√
z2+m2+iz(|x−x1|+|y−y1|) zχ(z)√

z2 +m2
(Rj)v

∗(
c−1

z
S1 − S1TP − PTS1)vR2 dz dx1 dy1

∣∣∣∣ ≲ |t|− 3
2 ⟨x⟩⟨y⟩.

Here we may select any j ∈ {−1, 2} for the second bound. It remains to consider

1

2πiD

∫
R3

e−it
√
z2+m2+iz(|x−x1|+|y−y1|) zχ(z)√

z2 +m2
R−1(z)(x, x1)

[v∗
[ 1

cP z
S1 − S1TP − PTS1

]
v](x1, y1)R−1(z)(y1, y) dz dx1 dy1.

We start with S1 and consider the most singular part

−1

8πicPD

∫
R3

e−it
√
z2+m2+iz(|x−x1|+|y−y1|) χ(z)

z2
√
z2 +m2

[
m(β + I)v∗S1vm(β + I)

]
(x1, y1) dx1dy1dz.(56)

Using (43) and S1 ≤ Q, we have

(56) =
−1

8πicPD

∫
R2

∫ |x−x1|

|x|

∫ |y−y1|

|y|
Gt(s1 + s2)

[
m(β + I)v∗S1vm(β + I)

]
(x1, y1) ds1ds2dx1dy1,

where Gt(r) is as in (52) in the proof of Lemma 4.4. Furthermore, using (53) and letting

Ht(y1, y) =

∫ |y−y1|

|y|
χ(s1/t)e

−im
√

t2−s21ds1,

we have (up to an error term satisfying the weighted bound)

(56) =
−1

8πicPD
(−2πi)

1
2 eimt

(mt)
1
2

∫
R2

Ht(x1, x)
[
m(β + I)v∗S1vm(β + I)

]
(x1, y1)Ht(y1, y) dx1dy1.

Similarly, if we consider the contribution of

−1

8πicPD

∫
R3

e−it
√
z2+m2+iz(|x−x1|+|y1−y|) χ(z)

z
√
z2 +m2

[
− αsgn(x− x1)v

∗S1vm(β + I)
]
dx1 dy1 dz
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we obtain (up to an error term satisfying the weighted bound)

−1

8πicPD
(−2πi)

1
2 eimt

(mt)
1
2

∫
R2

χ(x/t)e−im
√
t2−x2

(−α)sgn(x− x1)[v
∗S1vm(β + I)](x1, y1)Ht(y1, y) dx1dy1.

Finally the contribution of

−1

8πicPD

∫
R3

e−it
√
z2+m2+iz(|x−x1|+|y1−y|) χ(z)√

z2 +m2

[
− α sgn(x− x1)v

∗S1v(−α) sgn(y1 − y)
]
dx1 dy1 dz

is (up to an error term satisfying the weighted bound)

−1

8πicPD
(−2πi)

1
2 eimt

(mt)
1
2

∫
R2

χ(x/t)e−im
√
t2−x2

(−α) sgn(x− x1)

[v∗S1v](x1, y1)(−α) sgn(y1 − y)χ(y/t)e−im
√

t2−y2
dx1 dy1.

So that, the contribution of the S1 term is

(57)
−1

8πicPD
(−2πi)

1
2 eimt

(mt)
1
2

∫
R2

[
− χ(x/t)e−im

√
t2−x2

α sgn(x− x1) +mHt(x1, x)(β + I)
]
(v∗S1v)(x1, y1)[

− χ(y/t)e−im
√

t2−y2
α sgn(y1 − y) +mHt(y1, y)(β + I)

]
dx1dy1 +O(|t|− 3

2 ⟨x⟩⟨y⟩).

Picking a unit ϕ ∈ S1L
2 as in Lemma 5.1, note by Corollary 5.3 S1L

2 is one dimensional, and defining

a1(x, t) :=

∫
R

[
− χ(x/t)e−im

√
t2−x2

α sgn(x− x1) +mHt(x1, x)(β + I)
]
v∗(x1)ϕ(x1) dx1,

a2(y, t) :=

∫
R
ϕ∗(y1)v(y1)

[
− χ(y/t)e−im

√
t2−y2

α sgn(y1 − y) +mHt(y1, y)(β + I)
]
dy1,

we have

(57) =
−1

8πicPD
(−2πi)

1
2 eimt

(mt)
1
2

a1(x, t)a2(y, t) +O(|t|− 3
2 ⟨x⟩⟨y⟩).

Similarly, the contributions of S1TP and PTS1 terms are

(58)
1

8πiD
(−2πi)

1
2 eimt

(mt)
1
2

∫
R2

[
− χ(x/t)e−im

√
t2−x2

α sgn(x− x1) +mHt(x1, x)(β + I)
]
(v∗S1TPv)(x1, y1)[

mχ(y/t)e−im
√

t2−y2
(β + I)

]
dx1dy1 +O(|t|− 3

2 ⟨x⟩⟨y⟩), and

(59)
1

8πiD
(−2πi)

1
2 eimt

(mt)
1
2

∫
R2

[
mχ(x/t)e−im

√
t2−x2

(β + I)
]
(v∗PTS1v)(x1, y1)[

− χ(y/t)e−im
√

t2−y2
α sgn(y1 − y) +mHt(y1, y)(β + I)

]
dx1dy1 +O(|t|− 3

2 ⟨x⟩⟨y⟩).

Using unit ϕ ∈ S1L
2 we have above, we can write the kernel of operator PTS1 as PTS1(x1, y1) =

[PTϕ](x1)ϕ
∗(y1). From Lemma 5.1, PTϕ(x1) = κ0v(x1)(1, 1)

T . Therefore∫
R
(β + I)v∗(x1)PTS1(x1, y1) dx1 = κ0

∫
R
(β + I)v∗(x1)v(x1)(1, 1)

Tϕ∗(y1) dx1

= κ0∥(a+ b, c+ d)T ∥22(1, 1)Tϕ∗(y1).

Also using a2 notation as above, we write
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(59) =
1

8πiD
(−2πi)

1
2 eimt

(mt)
1
2

κ0m∥(a+ b, c+ d)T ∥22χ(x/t)e−im
√
t2−x2

(1, 1)Ta2(y, t) +O(|t|− 3
2 ⟨x⟩⟨y⟩)

=
−1

8πicPD
(−2πi)

1
2 eimt

(mt)
1
2

b1(x, t)a2(y, t) +O(|t|− 3
2 ⟨x⟩⟨y⟩),

where b1(x, t) := 2iκ0χ(x/t)e
−im

√
t2−x2

(1, 1)T . We used −cPm∥(a + b, c + d)T ∥22 = 2i in the last equality.

Similarly,

(58) =
−1

8πicPD
(−2πi)

1
2 eimt

(mt)
1
2

a1(x, t)b2(y, t) +O(|t|− 3
2 ⟨x⟩⟨y⟩),

where b2(y, t) := 2iκ0χ(y/t)e
−im

√
t2−y2

(1, 1). Finally, noting that β + I = (1, 1)T (1, 1), we can write the

contribution of P term as

(54) =
−1

8πiDcP
(−2πi)

1
2 eimt

(mt)
1
2

b1(x, t)b2(y, t) +O(|t|− 3
2 ⟨x⟩⟨y⟩).

Note that we can express the sum of the contributions of P, S1, S1TP, PTS1 above as an operator with kernel

of the form:

−1

8πicPD
(−2πi)

1
2 eimt

(mt)
1
2

[
a1(x, t) + b1(x, t)

][
a2(y, t) + b2(y, t)

]
+O(|t|− 3

2 ⟨x⟩⟨y⟩) =: F+
t +O(|t|− 3

2 ⟨x⟩⟨y⟩).(60)

□

Finally, we prove the last claim in Theorem 1.2.

Proposition 4.6. If the threshold energy m is not regular and |v(x)| ≲ ⟨x⟩− 9
2−, then for |t| > 1, there is an

operator F+
t (x, y) of rank one given by

F+
t (x, y) =

1

2πicPD
(−2πi)

1
2 e−imt

(mt)
1
2

ψ(x)[ψ(y)]∗,

where D and cP are the constants from Remark 3.7, so that

∥e−itHP+
ac(H)χ(H)− F+

t ∥L1→L∞ ≲ |t|− 3
2 ⟨x⟩2⟨y⟩2.

Furthermore, ψ+ ∈ L∞ is a canonical resonance function, a distributional solution to Hψ+ = mψ+. Hence

∥F+
t ∥1→∞ ≲ |t|− 1

2 .

A similar construction may be done for the negative threshold to obtain the operator F−
t . The rank at

most two operator in the statement of Theorem 1.2 is exactly Ft = F+
t + F−

t .

Proof. Following the proof of Proposition 4.5, we need only provide further detail in the construction of F+
t .

Note that by Taylor expansion we have

χ(x/t)e−im
√
t2−x2

= e−imt +O(⟨x⟩2/t), and

Ht(x1, x) = e−imt(|x− x1| − |x|) +O(⟨x⟩2⟨x1⟩3/t).

Inserting this into the functions aj , bj in (60), using S1 ≤ Q and (43) we see

a1(x, t) = −e−imt

∫
R

[
α sgn(x− x1) +m(|x− x1| − |x|)(β + I)

]
v∗(x1)ϕ(x1) dx1 +O(⟨x⟩2⟨x1⟩3/t)

= −e−imt

∫
R

[
α sgn(x− x1) +m|x− x1|(β + I)

]
v∗(x1)ϕ(x1) dx1 +O(⟨x⟩2⟨x1⟩3/t)
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= 2ie−imt

∫
R
G0(x, x1)v

∗(x1)ϕ(x1) dx1 +O(⟨x⟩2⟨x1⟩3/t)

By Lemma 5.1, −G0v
∗ϕ = ψ − κ0(1, 1)

T . So that

a1(x, t) = 2ie−imt
[
ψ(x)− κ0(1, 1)

T
]
+O(⟨x⟩2⟨x1⟩3/t)

Similarly, we see (up to the error term) that a2(y, t) = 2ie−imt
[
ψ(y)−κ0(1, 1)T

]∗
, b1(x, t) = 2ie−imtκ0(1, 1)

T ,

and b2(y, t) = 2ie−imt
[
κ0(1, 1)

T
]∗
. Combining all these terms we obtain (up to the error term)

(60) =
1

2πicPD
(−2πi)

1
2 e−imt

(mt)
1
2

ψ(x)[ψ(y)]∗.

□

Remark 4.7. The analysis for the negative portion of the spectrum (−∞,−m] follows with minimal changes.

In the resolvent expansions in Section 3 one uses the change of variables λ = −
√
m2 + z2, while the projection

P will replaced by the projection operator P− with kernel

P−(x, y) = ∥(a− b, c− d)T ∥−2
2 v(x)(β − I)v∗(y).

5. Spectral subspaces associated to threshold obstructions

In this section we relate the subspace S1L
2 to distributional solutions of Hψ = mψ and the invertibility

of operators that arise in the expansions for the spectral measure in Section 3. As usual we consider the

positive threshold λ = m, the negative threshold analysis follows with minor modifications. The calculations

here follow the set-up established by Jensen and Nenciu in [30] for the one dimensional Schrödinger operator.

Recall that for |v(x)| ≲ ⟨x⟩− 3
2− regularity of m is equivalent to the invertibility of QTQ. We relate the

kernel, S1L
2, of QTQ to the distributional solutions ofHψ = mψ as follows. Let θ = ∥(a+b, c+d)∥−1

2 v(1, 1)T

be a canonical unit vector in PL2.

Lemma 5.1. Assume |v(x)| ≲ ⟨x⟩−2−. Then, if ϕ ∈ S1L
2(R)\{0}, then ϕ = Uvψ for some ψ ∈ L∞(R)\{0}

which is a distributional solution to Hψ = mψ. Further, ψ = −G0v
∗ϕ+ κ0(1, 1)

T , ψ ∈ L∞(R), with

κ0 = ⟨Tϕ, v(1, 1)T ⟩∥(a+ b, c+ d)∥−2
2 = ⟨Tϕ, θ⟩∥(a+ b, c+ d)∥−1

2 .

Furthermore, ψ cannot be an eigenvalue, i.e. ψ ̸∈ L2(R).

Proof. Recalling that S1 ≤ Q, we can see that Pϕ = 0 and
∫
(β + I)v∗(y)ϕ(y) dy = 0. So, for ϕ ∈ QL2 we

have (with κ0 as in the statement above)

0 = Tϕ− PTϕ = Tϕ− κ0v(1, 1)
T = Uϕ+ vG0v

∗ϕ− κ0v(1, 1)
T .

Letting

ψ = −G0v
∗ϕ+ κ0(1, 1)

T ,(61)

and using U2 = I, we have ϕ = Uvψ. We claim that Hψ = mψ. Namely, we consider

(H −mI)ψ = (Dm −mI)ψ + V ψ = −(Dm −mI)G0v
∗ϕ+ v∗Uvψ

= −(Dm −mI)G0v
∗ϕ+ v∗ϕ.
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Here we used that (Dm −mI)(1, 1)T = 0. Our claim is proven provided that (Dm −mI)G0v
∗ϕ = v∗ϕ.

Noting (18) we have

(Dm −mI)G0v
∗ϕ = (Dm −mI)(Dm +mI)

(
−|x− y|

2

)
v∗ϕ = (−∂xx)

(
−|x− y|

2

)
v∗ϕ.

We may conclude this is equal to v∗ϕ provide v∗ϕ ∈ L1,1.

We now show ψ ∈ L∞ as claimed. Using (61), the constant vector is obviously bounded, we consider only

the first portion. In the sense of distributions, we have

G0v
∗ϕ = (Dm +mI)

(
−|x− y|

2

)
v∗ϕ

= −1

4
(iα∂x +m(β + I))

∫
R
|x− y|v∗(y)ϕ(y) dy

= −1

4
(iα∂x +m(β + I))

[ ∫ x

−∞
(x− y)v∗(y)ϕ(y) dy +

∫ ∞

x

(y − x)v∗(y)ϕ(y) dy

]
= − i

4
α

[ ∫ x

−∞
v∗(y)ϕ(y) dy −

∫ ∞

x

v∗(y)ϕ(y) dy

]
− m

4
(β + I)

∫
R
|x− y|v∗(y)ϕ(y) dy.

Here we note that since ϕ ∈ QL2, we must have that

− i

4

∫
R
v∗(y)ϕ(y) dy = κ1(1,−1)T ,

for some constant κ1. This follows since

(β + I)

∫
R
v∗(y)ϕ(y) dy = (0, 0)T .

Further note that α(1,−1)T = −(1, 1)T . Using this, we write

i

4
α

[ ∫ x

−∞
v∗(y)ϕ(y) dy −

∫ ∞

x

v∗(y)ϕ(y) dy

]
= κ1(1, 1)

T − i

2
α

∫ ∞

x

v∗(y)ϕ(y) dy.

Similarly, if we denote the constant vector u =
∫
R yv

∗(y)ϕ(y) dy we have

(β + I)

∫
R
|x− y|v∗(y)ϕ(y) dy

= (β + I)

[ ∫ ∞

x

(y − x)v∗(y)ϕ(y) dy +

∫ x

−∞
(x− y)v∗(y)ϕ(y) dy

]
= (β + I)

(
2

∫ ∞

x

(y − x)v∗(y)ϕ(y) dy − u
)

= κ2(1, 1)
T + 2(β + I)

∫ ∞

x

(y − x)v∗(y)ϕ(y) dy.

Combining all these facts, with some constant κ, we may write:

ψ = κ(1, 1)T +
1

2

∫ ∞

x

[−m(y − x)(β + I) + iα]v∗(y)ϕ(y) dy.(62)

This proves that ψ is bounded on x > 0 provided that v∗ϕ ∈ L1,1 since |y − x| ≤ |y| on this domain. A

similar argument proves that ψ is also bounded on x < 0 by writing
∫∞
x

=
∫
R −

∫ x

−∞. Now we prove that ψ

cannot be in L2 \ {0}. Recalling that ϕ = Uvψ, we write

ψ = κ(1, 1)T +
1

2

∫ ∞

x

[−m(β + I)(y − x) + iα]V (y)ψ(y) dy.
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Note that if κ = 0, then ψ satisfies

(63) ψ(x) =

∫
K(x, y)ψ(y)dy,

where |K(x, y)| ≲ ⟨y− x⟩|V (y)|χy>x. By a Volterra integral argument this implies that ψ ≡ 0 provided that

|V (y)| ≲ ⟨y⟩−2−. Therefore ψ → κ(1, 1)T ̸= 0 as x→ ∞, and hence it cannot be in L2. □

We note that, denoting PTϕ = κ0v(1, 1)
T , iα

∫
v∗(y)ϕ(y) dy = κ1(1, 1)

T and u = (u1, u2)
T :=∫

yv∗(y)ϕ(y) dy one obtains the expansion

ψ =

[
κ0 −

κ1
2

+
m

2
(β + I)u

]
(1, 1)T +

1

2

∫ x

−∞
(iα+m(β + I)(x− y))v∗(y)ϕ(y) dy.(64)

This follows by writing∫
R
sgn(x− y)v∗(y)ϕ(y) dy

=

∫ x

−∞
v∗(y)ϕ(y) dy −

∫ ∞

x

v∗(y)ϕ(y) dy = −
∫
R
v∗(y)ϕ(y) dy + 2

∫ x

−∞
v∗(y)ϕ(y) dy,

with a similar expansion for the integral involving |x−y|v∗(y)ϕ(y) while noting that (β+I)
∫
v∗(y)ϕ(y) dy = 0.

The analysis above gives the following structure for ψ: for some ψ1 ∈ L∞, some constants c1, c2, and

ϵ > 0

(65) ψ = (1, 1)T [c1χ̃x>0 + c2χ̃x<0] + ⟨x⟩−ϵψ1(x).

Lemma 5.2. If ψ ̸= 0 satisfying (65) is a distributional solution of Hψ = mψ, then ϕ = Uvψ ∈ S1L
2, the

kernel of QTQ.

Proof. First we need to see that Pϕ = 0, i.e. we need to establish

(β + I)

∫
(v∗Uv)(y)ψ(y)dy = (β + I)

∫
V (y)ψ(y)dy = 0.

Using (β + I)(β − I) = 0, (β + I)α(1, 1)T = 0, (65), and noting that

0 = (H −mI)ψ = [iα∂x +m(β − I)]ψ + V ψ,

we conclude that

(β + I)V (x)ψ(x) = −i(β + I)α∂x(⟨x⟩−ϵψ1(x)).

Therefore for any test function g with g(0) = 1, we have∫
(β + I)V (y)ψ(y)g(δy)dy = i(β + I)α

∫
⟨y⟩−ϵψ1(y)δg

′(δy)dy = i(β + I)α

∫
⟨y/δ⟩−ϵψ1(y/δ)g

′(y)dy → 0,

as δ → 0+. Therefore by Lebesgue dominated convergence theorem, we conclude that
∫
(β+I)V (y)ψ(y)dy =

0 as needed.

Now,

QTQϕ = QTϕ = Q(U + vG0v
∗)Uvψ = Qv(ψ +G0V ψ).

Note that (Dm − mI)(ψ + G0V ψ) = −V ψ + (Dm − mI)G0V ψ = 0 since V ψ ∈ L1,1. Therefore g :=

ψ + G0V ψ is a distributional solution of iα∂xg + m(β − I)g = 0. Since [α(β − I)]2 = 0, this implies
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that g(x) = [I + imα(β − I)x]u for some constant vector u. Note that, by the proof of previous lemma,

G0V ψ = G0v
∗ϕ is bounded, and hence g is bounded. We conclude that g = u = c(1, 1)T , and hence Qvg = 0.

□

Corollary 5.3. Assume |v(x)| ≲ ⟨x⟩−2−. Then, S1L
2(R) is at most one dimensional.

Proof. To see that the resonance space is at most one dimensional, take ψ1, ψ2 as in (62). We see that

ψ1 + dψ2 satisfies (63) for some d ̸= 0. Therefore, it vanishes by the Volterra argument. This implies that

the resonance space is at most one dimensional.

□

Lemma 5.4. If |V (x)| ≲ ⟨x⟩−2− and S1 ̸= 0, then

|κ0|2 −
im

2
Tr(S1M1S1) ̸= 0.

Consequently, we have hk − |ℓ|2 ̸= 0 in (38).

Proof. By Corollary 5.3, S1L
2 is a one dimensional subspace. We showed that if ϕ ∈ S1L

2 then ψ = −G0v
∗ϕ+

κ0(1, 1)
T is a solution to Hψ = mψ. Recall (64), with PTϕ = κ0v(1, 1)

T , iα
∫
v∗(y)ϕ(y) dy = κ1(1, 1)

T and

u = (u1, u2)
T :=

∫
yv∗(y)ϕ(y) dy. From the proof of Lemma 5.1, by the Volterra integral argument under

the decay assumptions on V , we must have that κ0 − κ1

2 + m
2 (u1 + u2) ̸= 0 or ψ ≡ 0 and S1 = 0.

We first consider the contribution of Tr(S1M1S1). Recalling that M1 = vG1v
∗ and (19),

G1(x, y) =
1

2
α(x− y) +

−im
4

(β + I)|x− y|2 + i

4m
I,

we look at

(66)
1

2

∫
ϕ∗(x)v(x)α(x− y)v∗(y)ϕ(y) dy dx

=
−i
2

(∫
xϕ∗(x)v(x) dx

)(∫
iαv∗(y)ϕ(y) dy

)
+

−i
2

(
− iα

∫
xϕ∗(x)v(x) dx

)(∫
v∗(y)ϕ(y) dy

)
=

−i
2
u∗κ1(1, 1)

T +
−i
2

[
κ1(1, 1)

T
]∗
u =

−i
2
κ1(u1 + u2) +

−i
2
κ1(u1 + u2).

Now, noting that S1 ≤ Q, using (43) we have∫
x2ϕ∗(x)v(x)(β + I)v∗(y)ϕ(y) dy dx = 0.

Writing |x− y|2 = x2 − 2xy + y2 we see that

(67)
−im
4

∫
ϕ∗(x)v(x)(β + I)|x− y|2v∗(y)ϕ(y) dy dx

=
im

2

∫
xϕ∗(x)v(x)(β + I)yv∗(y)ϕ(y) dy dx =

im

2
u∗(β + I)u =

im

2
|u1 + u2|2.

Finally, we have

i

4m

∫
ϕ∗(x)v(x)Iv∗(y)ϕ(y) dy dx =

i

4m

(
iκ1(1, 1)

T
)∗(

iκ1(1, 1)
T
)
=

i

2m
|κ1|2.(68)

Now, combining (66), (67) (68), we see that
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|κ0|2 −
im

2
Tr(S1M1S1) = |κ0|2 −

mκ1
4

(u1 + u2)−
mκ1
4

(u1 + u2) +
m2

4
|u1 + u2|2 +

1

4
|κ1|2

= |κ0|2 +
∣∣∣∣− κ1

2
+
m

2
(u1 + u2)

∣∣∣∣2.
Now, for this to be zero we need both κ0 = 0 and −κ1

2 + m
2 (u1 + u2) = 0, hence implying that κ0 − κ1

2 +

m
2 (u1 + u2) = 0, which is a contradiction. □

Finally, as in [30], we construct an example of a resonance and eigenfunction with explicit potential hence

demonstrating that such obstructions exist for the type of potentials considered here.

Example 5.5. The function ψ+(x) = e−⟨x⟩δ(1, 1)T with self-adjoint potential

V (x) =

 0 iδx⟨x⟩δ−2

−iδx⟨x⟩δ−2 0


is a distributional solution to Hψ+ = mψ+. Hence ψ+ is a resonance if δ < 0, ψ+ → (1, 1)T as |x| → ∞
and |V (x)| ≲ ⟨x⟩δ−1. If 0 < δ < 1, ψ+ is an eigenfunction.

Similarly ψ−(x) = e−⟨x⟩δ(−1, 1)T with self-adjoint potential

V (x) =

 0 −iδx⟨x⟩δ−2

iδx⟨x⟩δ−2 0


is a distributional solution to Hψ− = −mψ−.

6. Limiting absorption principle

In this section we prove Theorem 1.3 to obtain a limiting absorption principle that is uniformly bounded

on the continuous spectrum. We begin with energies close to the threshold m. We only work with R+
0 and

drop the ± signs as usual. Using the expansions and tools developed in Sections 3 and 4, one can easily

obtain a limiting absorption principle for σ > 3
2 . To obtain the sharper bound of Theorem 1.3, we modify

the argument to first prove

Lemma 6.1. Assume that |V (x)| ≲ ⟨x⟩−3−, and that m is a regular point of the spectrum. Then for all

σ > 1 we have

sup
0<|z|<z0

∥RV (z)∥L2,σ→L2,−σ ≲ 1.

Proof. Using (14) we have

R0(z)(x, y) =
im

2z
(β + I)eiz|x−y| +O(1).

Using this and the first expansion in Proposition 3.5 in the symmetric resolvent identity (12), we obtain

RV (z)(x, y) =
im

2z
(β + I)eiz|x−y| +O(1)

−
∫
R2

[ im
2z

(β + I)eiz|x−x1| +O(1)
][
v∗
[
cP zP + z2Λ0(z) + zΛ1(z)Q+ zQΛ2(z) +QΛ3(z)Q

]
v

]
(x1, y1)[ im

2z
(β + I)eiz|y−y1| +O(1)

]
dx1dy1,
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provided that m is a regular point of the spectrum and |v(x)| ≲ ⟨x⟩−
1
2−. Here each Λj is unifomly bounded

in L2 for 0 < |z| < z0.

Note that we need to prove that the operator with kernel RV (z)(x, y)⟨x⟩−1−⟨y⟩−1− is uniformly bounded

in L2 for 0 < |z| < z0. This follows by using the orthogonality as in (43) and (44) to eliminate the factors

of 1
z for all terms except for the leading singular terms. It remains only to control the following terms:

im

2z
(β + I)eiz|x−y| +

m2cP
4z

∫
R2

eiz|x−x1|
[
(β + I)v∗Pv(β + I)

]
(x1, y1)e

iz|x−x1|dx1dy1

=
im

2z
(β + I)

[
eiz|x−y| − eiz(|x|+|y|)]+O(1)

= O
(
||x− y| − |x| − |y||+ 1

)
= O

(
min(⟨x⟩, ⟨y⟩

)
.

Where we used eiz|x−x1| = eiz|x|+O(|z||x1|), similarly eiz|y−y1| = eiz|y|+O(|z||y1|), cP = −2i
m∥(a+b,c+d)T ∥2

2
and

(51). Controlling the error term here, and utilizing (44) necessitate the assumption that |V (x)| ≲ ⟨x⟩−3−.

Now note that, by Schur’s test, the operator with kernel

min(⟨x⟩, ⟨y⟩)
⟨x⟩σ⟨y⟩σ

, σ > 1

is bounded in L2(R), thus establishing the claim. □

We now consider energies away from the threshold. First note that the free resolvent

(69) R0(z)(x, y) =
[
iα∂x +mβ +

√
m2 + z2I

] ieiz|x−y|

2z
=

i

2

[
− α sgn(x− y) +

mβ +
√
z2 +m2I

z

]
eiz|x−y| =: f0(z, x, y)e

iz|x−y|,

trivially satisfies for all |z| > z0 > 0 and σ > 1
2

(70) ∥R0(z)∥L2,σ→L2,−σ ≤ Cσ,z0 .

We also have

(71) RV (z) = R0(z)
[
I + VR0(z)

]−1
.

We can write for fixed d > 0

R0 = R1
d +R2

d +R3
d,(72)

where

R1
d(z)(x, y) =

i

2

[
− α+

mβ +
√
z2 +m2I

z

]
eiz(x−y)χ(d,∞)(x− y) = f1(z)e

iz(x−y)χ(d,∞)(x− y),

R2
d(z)(x, y) =

i

2

[
+ α+

mβ +
√
z2 +m2I

z

]
eiz(y−x)χ(d,∞)(y − x) = f2(z)e

iz(y−x)χ(d,∞)(y − x), and

R3
d(z)(x, y) =

i

2

[
− α sgn(x− y) +

mβ +
√
z2 +m2I

z

]
eiz|x−y|χ(−2d,2d)(x− y) =: f3(z, x− y)eiz|x−y|,

where χI denotes a smooth cutoff supported in the interval I so that χ(d,∞)(x)+χ(d,∞)(−x)+χ(−2d,2d)(x) ≡ 1.

Note that R1
d and R2

d satisfy (70), and by Schur’s test, we have

∥R3
d∥L2→L2 ≲ d.
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Using these bounds we have

∥VR3
d∥L2,σ→L2,−σ ≤ dCV , and

∥VR1
d∥L2,σ→L2,−σ , ∥VR2

d∥L2,σ→L2,−σ ≤ Cσ,V , for σ >
1

2
, |z| > z0 > 0

provided that |V (x)| ≲ ⟨x⟩−2σ. Also note that all of the bounds above hold when we replace the kernel with

its absolute value.

These and a variant of the argument in the next section controlling the infinite series expansion (73)

establish the limiting absorption principle for large energies as in [16] (also see [18, 19]). Combining this

with the results of Georgescu and Mantoiu for compact subsets of the spectrum, [26], we have the following

uniform limiting absorption principle:

Lemma 6.2. Assume that V has continuous entries. Then for any |z| > z0 > 0, and k = 0, 1, 2, . . . , we

have

∥∂kzR±
V (z)∥L2,σ→L2,−σ ≤ Cσ,k,V ,

provided that σ > 1
2 + k, and |V (x)| ≲ ⟨x⟩−2σ−.

For completeness, we discuss the consequences of the uniform limiting absorption principle in Theorem 1.3.

An immediate consequence, see e.g. [36, Theorems XIII.25 and XIII.30], is the Kato smoothing bound:

∥⟨x⟩−σe−itHf∥L2
tL

2
x
≤ Cσ,H∥f∥L2 ,

provided that the thresholds are regular, σ > 1, |V (x)| ≲ ⟨x⟩−3−, and V has continuous entries. From

here, following the argument of Rodnianski and Schlag in [37], one obtains the Strichartz estimates in

Corollary 1.4, also see [18, 19] and Section 2 of [16]. The eigenvalue free region follows from a standard

perturbation argument. We refer the reader to Section 6 of [16] for a more complete discussion.

7. High energy dispersive estimates

To complete the proof of Theorems 1.1, we consider the contribution of the Stone’s formula (7) when the

spectral variable is bounded away from the threshold energies. We begin by considering the case when |z|
is sufficiently large. We adapt the argument of [16], which was designed to establish large energy limiting

absorption principles, to obtain L1 → L∞ bounds with almost optimal derivative requirement on the initial

data. We note that this method has not been used before to obtain global decay estimates. The reason that

it works in the case of one dimensional Dirac equation is that, unlike in dimensions d ≥ 2, the magnitude of

the free resolvent on R also satisfies the limiting absorption principle. However, the oscillation in R0 is still

crucial to establish the limiting absorption principle for the perturbed resolvent and for dispersive estimates.

Proposition 7.1. Assume |V (x)| ≲ ⟨x⟩−δ and |∂xV (x)| ≲ ⟨x⟩−1−. If χj(z) is a smooth, even cut-off to

frequencies |z| ≈ 2j and δ > 3,∣∣∣∣ ∫
R
e−it

√
z2+m2 zχj(z)√

z2 +m2
[RV (z)](x, y) dz

∣∣∣∣ ≲ min(2j , |t|− 1
2 2

3j
2 ).

Furthermore, if δ > 5, and |∂xV (x)| ≲ ⟨x⟩−2−∣∣∣∣ ∫
R
e−it

√
z2+m2 zχj(z)√

z2 +m2
[RV (z)](x, y) dz

∣∣∣∣ ≲ min(2j , |t|− 1
2 2

3j
2 , |t|− 3

2 2
3j
2 max(⟨x⟩, ⟨y⟩)).
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To establish the desired bounds, we utilize a different approach depending on the size of |z|. To establish

the desired bounds from Proposition 7.1 for sufficiently large |z|, we iterate the resolvent identity to form an

infinite series. Formally, we write

RV (z) =

∞∑
m=0

R0(z)[−VR0(z)]
m.(73)

By the proof of the limiting absorption principle, the series converges in operator norm : L2,σ → L2,−σ,

σ > 1
2 , for large enough |z|. To study the contribution of the mth term of the series to the dispersive

estimate, one cannot utilize decay in the spectral variable, as can be done for the Schrödinger operator [27].

Instead we rely on a subtle cancellation that we exploit below for sufficiently large |z|. When |z| is bounded
above, a simpler argument may be employed see Proposition 7.4 and Lemma 7.6 below.

For the dispersive bounds, we select a term from the series (73), and show that contribution to the

dispersive estimate is summable in m. To that end, consider for some M to be determined and 0 ≤ r < M

and write m = kM + r,

(74)

∫
R
e−it

√
z2+m2 z√

z2 +m2
χj(z)

[
R0(z)[VR0(z)]

kM [VR0(z)]
r
]
(x, y)dz.

Recalling (72), we write R0 = R1
d +R2

d +R3
d. For each block of

VRj1
d · · ·VRjM

d ,

where ji ∈ {1, 2, 3} we have two choices; after removing all instances of j = 3, either all remaining j’s are the

same, or there is a pair of j’s taking different values 1, 2. As in [18, 19, 16], we call the first case a directed

product, and the latter case an undirected product. A product consisting of all R3
d’s is a directed product.

We have the following lemma for directed products. We omit the elementary proof which is similar to the

ones given in [19, 16].

Lemma 7.2. Fix a potential V satisfying |V (x)| ≲ ⟨x⟩−1−. For any δ > 0, there exists a distance d =

d(δ) > 0 such that each directed product satisfies the estimate

(75)
∣∣[VRj1

d · · ·VRjM
d ](x, y)

∣∣ ≤ |V (x)|CV,δ δ
M

uniformly over all z > 1 and all choices of M . Moreover, the same claim holds if we replace the kernel of

Rj
d’s with their absolute value.

We note that this bound does not rely on the oscillation of the resolvent, and it follows because of the

support condition on the kernels. We are now ready to prove Proposition 7.1 for |z| sufficiently large.

Lemma 7.3. Assume |V (x)| ≲ ⟨x⟩−δ and |∂xV (x)| ≲ ⟨x⟩−1−. If δ > 1, there exists a J sufficiently large so

that for all j ≥ J , we have∣∣∣∣ ∫
R
e−it

√
z2+m2 zχj(z)√

z2 +m2
[RV (z)](x, y) dz

∣∣∣∣ ≲ min(2j , |t|− 1
2 2

3j
2 ).

Furthermore, if δ > 2, and |∂xV (x)| ≲ ⟨x⟩−2−∣∣∣∣ ∫
R
e−it

√
z2+m2 zχj(z)√

z2 +m2
[RV (z)](x, y) dz

∣∣∣∣ ≲ min(2j , |t|− 1
2 2

3j
2 , |t|− 3

2 2
3j
2 max(⟨x⟩, ⟨y⟩)).
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Proof. From the preceding discussion of directed products in Lemma 7.2, it suffices to consider undirected

products. For an arbitrary undirected product, the block contains a factor of the form

R1
dV (R3

dV )nR2
d, or of the form R2

dV (R3
dV )nR1

d

for some n ≥ 0. Therefore, the integral in some adjacent space variables is either of the form

(76)

∫
Rn+1

eiz(x0−x1+xn+2−xn+1+
∑n

ℓ=1 |xℓ−xℓ+1|)f1χ(d,∞)(x0 − x1)f2χ(d,∞)(xn+2 − xn+1)V (x1)×

×
[ n∏
ℓ=1

f3(xℓ − xℓ+1)V (xℓ+1)
]
dx1 . . . dxn+1,

or a similar one with an harmless sign change in the phase. Recall (69) and (72) for the definitions of fj .

Letting xℓ−xℓ+1

2 = uℓ, ℓ = 1, . . . , n, and let x1+xn+1

2 = u0. We have (with U :=
∑n

ℓ=1 uℓ)

x1 = U + u0, x2 = U + u0 − 2u1, . . . , xn+1 = U + u0 − 2u1 − · · · − 2un = u0 − U.

We therefore rewrite the integral as∫
Rn+1

eiz(x0+xn+2+
∑n

ℓ=1 |uℓ|)e−2izu0f1χ(d,∞)(x0 − u0 − U)f2χ(d,∞)(xn+2 − u0 + U)V (u0 + U)×

×
[ n∏
ℓ=1

f3(uℓ)V (xℓ+1)
]
du0 . . . dun.

Integrating by parts in u0 variable, we obtain

= − i

2z

∫
Rn+1

eiz(x0+xn+2+
∑n

ℓ=1 |uℓ|)e−2izu0f1f2
[ n∏
ℓ=1

f3(uℓ)
]
×

× ∂u0

[
χ(d,∞)(x0 − x1)χ(d,∞)(xn+2 − xn+1)V (x1)

n∏
ℓ=1

V (xℓ+1)
]
du0 . . . dun.

Note that ∂u0
xℓ = ±1, ℓ = 1, . . . , n+1. Therefore, up to a constant, the integral in (76) is equal to a sum of

integrals each of the form 1
z times the integral in (76) with one of the potentials or one of the cutoff functions

χ(d,∞) replaced with its derivative.

We repeat this for each undirected M -block. After this we rewrite the integral in (74) by removing all

oscillatory factors from the product (where x0 = x, xkM+r+1 = y):∫
RkM+r+1

e−it
√
z2+m2+iz

∑kM+r
i=0 |xi−xi+1| z√

z2 +m2
χj(z)f0O1 · · ·Ok[V f0]

rdzdx1 · · · dxkM+r.

Here each directed block Oℓ consists of an M -fold product of V f1χ(d,∞) and V f3 or a product of f2’s and

f3’s. And each undirected block consists of a product of V f∗χ(d,∞), with f∗ = f1, f2, f3, and one potential

or a cutoff χ(d,∞) is replaced with C
z times its derivative. Note that there are 3Mk choices for O1, . . . Ok.

By Lemma 2.2, we bound the z integral by

2
3j
2

|t| 12

∫
|z|≈2j

∫ ∣∣∂z( zχj(z)√
z2 +m2

f0O1 · · ·Ok[V f0]
r
)∣∣dx1 · · · dxkM+rdz.
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Note that wherever the z derivative hits, we gain a factor of 2−j . Therefore, we consider the case when the

derivative hits the first term, and estimate the others similarly by product rule:

≲
2

3j
2

|t| 12
(MK + r + 1)

∫ ∣∣f0O1 · · ·Ok[V f0]
r
∣∣dx1 · · · dxkM+r,

where f0, f1, f2, f3 are replaced with their supremum on |z| ≈ 2j . They are all of order 1 (uniformly in j),

except one factor in each undirected product which is of order 2−j .

Note that for an undirected product |Oi(xℓ, xℓ+M )| can be bounded by a sum of ≲M terms of the form

2−jCM |V (xℓ)|
∫ ( ℓ+M−1∏

n=ℓ+1,n̸=i

|V (xn)|
)∣∣∂xi

V (xi)
∣∣dxℓ+1 . . . dxℓ+M−1 ≤ 2−jCM

V |V (xℓ)|.

or of the form

2−jCM |V (xℓ)|
∫ ( ℓ+M−1∏

n=ℓ+1

|V (xn)|
)∣∣∂xi

χ(d,∞)(xi−1 − xi)
∣∣dxℓ+1 . . . dxℓ+M−1 ≤ 2−jCM

V |V (xℓ)|.

The term when the derivative hits the cutoffs is harmless since ∥χ′
(d,∞)∥L1 ≲ 1 uniformly in d > 0. Therefore,

for undirected products we have

|Oi(xℓ, xℓ+M )| ≤ 2−jCM
V |V (xℓ)|,

uniformly in j and d > 0.

For directed products, using Lemma 7.2, given δ > 0, there exists d(δ) > 0 so that we have

|Oi(xℓ, xℓ+M )| ≤ CV,δδ
M |V (xℓ)|

for all M . Finally we have

|[V f0]r(xℓ, xℓ+r)| ≤ Cr
V |V (xℓ)|.

Combining all these inequalities, and renaming the variables, we have the bound

≲
2

3j
2

|t| 12
3MkCr

V max
(
CM

V 2−j , CV,δδ
M
)k ∫ ∣∣V (x1) . . . V (xk+1)

∣∣dx1 · · · dxk+1

≲
2

3j
2

|t| 12
CM

V max
(
(3C2

V )
M2−j , CV,δCV (3δ)

M
)k
.

Recall from (74) that m = kM + r with 0 ≤ r < M . This is summable in m by first choosing δ small, then

M large, then 2j large.

The weighted bound |t|− 3
2 2

3j
2 ⟨x⟩⟨y⟩ follows the same way by Lemma 2.2 provided that |V (x)|, |∂xV (x)| ≲

⟨x⟩−2−.

□

We now seek to close the argument by controlling the intermediate energies. We let ψc(z) be a smooth

cut-off function to a compact subset of the spectrum bounded away from the threshold.

Proposition 7.4. If |V (x)| ≲ ⟨x⟩−δ, for some δ > 3, we have the bound∣∣∣∣ ∫
R
e−it

√
z2+m2 zψc(z)(z)√

z2 +m2
[RV (z)](x, y) dz

∣∣∣∣ ≤ C0 min(1, |t|− 1
2 ),
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where the constant C0 depends on the support of the cut-off ψc(z). Furthermore, if δ > 5 we may bound the

above integral by C0 min(1, |t|− 1
2 , |t|− 3

2 max(⟨x⟩, ⟨y⟩)).

When |z| is bounded both above and below, we employ the standard resolvent identity twice to write

RV (z) = R0(z)−R0(z)VR0(z) +R0(z)VRV (z)VR0(z).

Inserting this into the Stone’s formula, (7), requires us to bound three integrals. The first integral, with only

R0(z) is bounded by Theorem 2.3 noting that 2j ≲ 1 in this case.

Lemma 7.5. If V ∈ L1,1, we have the bound∣∣∣∣ ∫
R
e−it

√
z2+m2 zψc(z)√

z2 +m2
[R0(z)VR0(z)](x, y) dz

∣∣∣∣ ≲ min(1, |t|− 1
2 , |t|− 3

2 max(⟨x⟩, ⟨y⟩))

Proof. We need to control the contribution of the iterated integral∣∣∣∣ ∫
R2

e−it
√
z2+m2 zψc(z)√

z2 +m2
R0(z)(x, x1)V (x1)R0(z)(x1, y) dx1 dz

∣∣∣∣.
A priori, using (14) the integral in x1 is bounded assuming that V ∈ L1. Using Fubini, we may integrate in

z first and let

ψ(z, x, y) =
zψc(z)(z)√
z2 +m2

[
−α sgn(x−x1)+

1

z
(mβ+

√
z2 +m2I)

]
V (x1)

[
−α sgn(x1−y)+

1

z
(mβ+

√
z2 +m2I)

]
.

Note that ∥ψ∥L1 ≲ |V (x1)| and ∥∂zψ∥L1 ≲ |V (x1)| uniformly in x, y. Therefore, using Lemma 2.2, and the

fact that V ∈ L1, we can bound by min(1, |t|− 1
2 ).

To obtain the weighted bound, we again apply Lemma 2.2 (with r = |x− x1|+ |x1 − y|) noting that j is

bounded above,

∥∥[∂zz + ir∂z]
(ψ
z

√
z2 +m2

)∥∥
L1

=
∥∥[∂zz+ir∂z][−α sgn(x−x1)+

1

z
(mβ+

√
z2 +m2I)

]
V (x1)

[
−α sgn(x1−y)+

1

z
(mβ+

√
z2 +m2I)

]
ψc(z)

∥∥
L1

≲ ⟨r⟩|V (x1)|.

Assuming V ∈ L1,1, we may bound the resulting x1 integral by max(1, |x|, |y|) to obtain the desired result.

□

Lemma 7.6. If |V (x)| ≲ ⟨x⟩−δ for some δ > 3, we have the bound∣∣∣∣ ∫
R
e−it

√
z2+m2 zψc(z)(z)√

z2 +m2
[R0(z)VRV (z)VR0(z)](x, y) dz

∣∣∣∣ ≲ min(1, |t|− 1
2 ).

Furthermore, if δ > 5 we have∣∣∣∣ ∫
R
e−it

√
z2+m2 zψc(z)(z)√

z2 +m2
[R0(z)VRV (z)VR0(z)](x, y) dz

∣∣∣∣ ≲ min(1, |t|− 1
2 , |t|− 3

2 max(⟨x⟩, ⟨y⟩)).

Proof. We need to control the contribution of the iterated integral∣∣∣∣ ∫
R3

e−it
√
z2+m2 zψc(z)√

z2 +m2
R0(z)(x, x1)V (x1)RV (z)(x1, y1)V (y1)R0(z)(y1, y) dx1 dy1 dz

∣∣∣∣.
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A priori, the integral in the spatial variables is bounded assuming that V ∈ L2, 12+. Using Fubini, we may

integrate in z first and let

ψ(z, x, y) =
zψc(z)√
z2 +m2

e−iz|x−x1|R0(z)(x, x1)V (x1)RV (z)(x1, y1)V (y1)e
−iz|y1−y|R0(z)(y1, y)

Note that ∥ψ∥L1 ≲ |V (x1)RV (z)(x1, y1)V (y1)| and

∥∂zψ∥L1 ≲ |V (x1)RV (z)(x1, y1)V (y1)|+ |V (x1)∂zRV (z)(x1, y1)V (y1)|

uniformly in x, y. Therefore, using Lemma 2.2, Lemma 6.2 and the facts that V ∈ L2, 32+ and j is bounded

above, we can bound by min(1, |t|− 1
2 ).

To obtain the weighted bound, we again apply Lemma 2.2 (with r = |x− x1|+ |x1 − y|) noting that

∥∥[∂zz + ir∂z]
(ψ
z

√
z2 +m2

)∥∥
L1

=
∥∥[∂zz + ir∂z]

[
e−iz|x−x1|R0(z)(x, x1)V (x1)RV (z)(x1, y1)V (y1)e

−iz|y1−y|R0(z)(y1, y)
]
ψc(z)

∥∥
L1

≲ ⟨r⟩
1∑

ℓ=0

|V (x1)∂
ℓ
zRV (z)(x1, y1)V (y1)|+ |V (x1)∂zzRV (z)(x1, y1)V (y1)|.

Noting that we need |V (x)| ≲ ⟨x⟩−5− to use Lemma 6.2 on the second derivative of the resolvent, we may

bound the resulting spatial integral by max(1, |x|, |y|).
□
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