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Abstract. We provide a natural derivation and motivation of the form of solution to a
system of differential equations with defective coefficient matrix. We avoid much of the
technical linear algebra machinery and instead use a scalar integrating factor and convert to
a higher order but easily solved system. From here, we derive the necessary form of solutions
using calculus and basic matrix algebra.

When solving systems of differential equations in the case of a defective coefficient matrix,
that is, when the n × n matrix does not have a set of n linearly independent eigenvectors,
many texts use a largely unmotivated algorithmic approach involving finding generalized
eigenvectors and multiplying by appropriate powers of t. Alternatively, some texts delve
deep into theoretical linear algebra using the Jordan block form to find the form of solution.
We propose a derivation that motivates the form of the solution without requiring theoretical
linear algebra. Our goal is to use basic calculus and matrix algebra to provide insight into
how and why the generalized eigenvectors and powers of t appear. We do this by reducing
to the zero eigenvalue case and then solving a much simpler but higher order system.

We consider a system of n first order, constant coefficient, homogeneous differential equa-
tions in matrix form:

~x ′(t) = A~x(t).(1)

Here ~x(t) = (x1(t), x2(t), . . . , xn(t))T . The standard approach in an introductory systems
of differential equations course, [1, 2, 3] is to solve the system of differential equations by
finding the eigenvalues and eigenvectors of the coefficient matrix A. That is, if A~v = λ~v,
then ~x(t) = eλt~v solves the system (1). This suffices to find all possible solutions, provided
the n×n matrix A has n linearly independent eigenvectors. When the matrix does not have
n linearly independent eigenvectors, the solution method is more complicated.

1. The basic set-up

To best illustrate the structure of solutions to a system with a defective matrix, we consider
the case of a system of equations (1) where A is defective with a repeated eigenvalue λ and
only a single eigenvector. We first consider the case when the repeated eigenvalue is zero.
We later show that we can reduce to this case if λ 6= 0.

Iterating (1) once yields

d2

dt2
~x(t) =

d

dt

(
d

dt
~x(t)

)
=

d

dt

(
A~x(t)

)
= A2~x(t).
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When A has only zero as an eigenvalue,1 we have An = 0. We repeatedly differentiate until
we arrive at

dn

dtn
~x(t) = An~x(t) = ~0.(2)

This gives an nth order system (2) such that solutions of (1) are also solutions of this new
system. Further, system (2) is easy to solve by directly integrating n times. Hence, solutions
to the nth order equation (2) are polynomials of order at most n− 1:

~x(t) = ~c0 + t~c1 + t2~c2 + · · ·+ tn−2~cn−2 + tn−1~cn−1

where ~cj may be any constant vectors. For example, ~x = ~c0, ~x = ~c0 + t~c1, ~x = ~c0 + t~c1 + t2~c2
are solutions provided n ≥ 3. This gives us the form of solutions to the original system (1)
and motivates the presence of the powers of t. However, there are solutions to (2) that are
not solutions to (1). Note that the solution set to (1) has dimension n, while the solution
set of (2) is higher dimensional. To give a solution to (1), the vectors ~cj cannot be entirely
arbitrary. Moreover, we seek a full set of n linearly independent solutions to the first order
system (1).

We now derive relationships the coefficient vectors in the polynomial solution to (2) must
satisfy in order to solve the original system (1). For convenience, we divide by a factorial and
re-write a representative solution as follows:

~xk(t) =
tk−1

(k − 1)!
~v1 + · · ·+ tj

j!
~vk−j + · · ·+ t~vk−1 + ~vk =

k−1∑
j=0

tj

j!
~vk−j ,(3)

for 1 ≤ k ≤ n.

For k = 1: Taking k = 1 in (3), we define ~x1(t) = ~v1. By substituting this into (1), we see

that if ~x1(t) is a solution to (1), then ~0 = ~x1
′(t) = A~v1. That is, ~v1 is an eigenvector for A

with eigenvalue λ = 0 as expected.

For k = 2: Taking k = 2 in (3), we define ~x2(t) = t~v1 + ~v2. Again, substituting into (1) we
have

~v1 = ~x2
′(t) = A(t~v1 + ~v2) = t(A~v1) +A~v2.

By equating powers of t on each side, we see that if ~x2(t) is a solution to (1), then A~v1 = ~0
and A~v2 = ~v1.

For general k:

~xk(t) =
tk−1

(k − 1)!
~v1 +

tk−2

(k − 2)!
~v2 + · · ·+ t1~vk−1 + ~vk =

k−1∑
j=0

tj

j!
~vk−j .(4)

1One can show if A has only zero eigenvalues then An = 0 using the fact that for any ~x, the set
{~x,A~x,A2~x, . . . , An~x} is linearly dependent. The proof is not the focus of this article, we omit it for the
sake of brevity. Alternatively, one can invoke the Cayley-Hamilton Theorem, see [2, Section 7.5].
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Differentiating and substituting ~xk(t) into (1) we arrive at:

k−1∑
j=1

tj−1

(j − 1)!
~vk−j = ~xk

′(t) = A~xk(t) =
k−1∑
j=0

tj

j!
A~vk−j .

By equating the coefficients of tk−1 on both sides we see that if ~xk(t) is a solution to (1),

then A~v1 = ~0. For tk−2, A~v2 = ~v1. This pattern continues, for the coefficients on tk−` (taking
j = ` + 1 in ~xk

′(t) and j = ` in A~xk(t) respectively), we must have A~v` = ~v`−1 for each
1 ≤ ` ≤ k. In fact, repeated multiplication by A naturally derives “generalized eigenvector”
equations, where for each 1 ≤ ` ≤ k,

Am~v` =

{
~v`−m m < `
~0 m ≥ ` .(5)

Note these generalized eigenvector equations are necessary conditions. It is straightforward
to check that under these conditions ~x1(t), ~x2(t), . . . , ~xn(t) are, in fact, solutions to (1).

To show that the solutions ~x1(t), ~x2(t), . . . , ~xn(t) are linearly independent we consider the
equation

c1~x1(t) + c2~x2(t) + · · ·+ cn−1~xn−1(t) + cn~xn(t) = ~0.

We begin by looking at powers of t, starting with the largest. Since ~xn(t) is the only term
with a tn−1 we must have cn = 0. Then ~xn−1(t) is the only term with a tn−2, hence cn−1 = 0.
Continuing this process, we see that cj = 0 for each j. Thus the solutions are linearly
independent.

2. The general case

We now show that we can reduce to the case when the repeated eigenvalue is zero. We
consider the scalar integrating factor e−λt, and note that if ~y(t) solves the system of equations
y ′(t) = A~y(t), then ~x(t) = e−λt~y(t) solves the system ~x ′(t) = (A−λI)~x(t). Substituting ~x(t)
into the system and using that y ′(t) = A~y(t) by assumption, we have

~x ′(t) = e−λt~y ′(t)− λe−λt~y(t) = e−λtA~y(t)− λe−λt~y(t)

= (A− λI)e−λt~y(t) = (A− λI)~x(t).

Hence ~x(t) solves the system as claimed. Finally, since A has eigenvalue λ, the matrix (A−λI)
has eigenvalue zero. Therefore it suffices to consider the case when λ = 0.

If a system of differential equations (1) has a defective coefficient matrix A, with repeated
eigenvalue λ we need only “undo” the effect of the integrating factor. We multiply the form
derived in the zero eigenvalue case by the exponential eλt. That is, solutions of ~x ′(t) = A~x(t)
take the form

~xk(t) = eλt
k−1∑
j=0

tj

j!
~vk−j ,

where ~v1 an eigenvector of A, and the remaining “generalized eigenvectors” ~v2, . . . , ~vk satisfy
the relationship(s) in (5) for each 1 ≤ ` ≤ k. This process may be employed if A has distinct
eigenvalues, though it requires a Jordan-block decomposition and conjugation.
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